Skip to main content
Log in

Method for Autoregression Modeling of a Speech Signal Using the Envelope of the Schuster Periodogram as a Reference Spectral Sample

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The problem of autoregressive modeling of a speech signal based on the data of the discrete Fourier transform in the mode of a sliding window of small duration (milliseconds) is considered. The problem of stability of the formed autoregressive model is investigated. To overcome it, it is proposed to use the envelope of the Schuster periodogram as a reference spectral sample. A new method of autoregressive modeling has been developed, in which the detection of the spectral envelope is carried out using a recirculator of a sequence of samples in the frequency domain. An example of its practical implementation is considered, a full-scale experiment is set up and carried out. Based on the results of the experiment, conclusions were drawn about achieving a significant gain in terms of not only stability, but also the accuracy of the autoregressive model of the speech signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. J. Gibson, Entropy 20 (10), 7502018 (2018). https://doi.org/10.3390/e20100750

    Article  Google Scholar 

  2. J. Gudnason, Speech Production Modeling and Analysis (Academic, Elsevier, 2014), Vol. 4, p. 985. https://doi.org/10.1016/B978-0-12-396501-1.00034-0

    Book  Google Scholar 

  3. Sh. Ando, The J. Acoustical Society of America 146, 2846 (2019). https://doi.org/10.1121/1.5136873

    Article  Google Scholar 

  4. S. Cui, E. Li, and X. Kang, in IEEE Int. Conf. Multimedia and Expo (ICME) (United Kingdom, London, 2020), p. 1. https://doi.org/10.1109/ICME46284.2020.9102765

  5. V. V. Savchenko, Radioelectron. & Commun. Syst. 64 (11), 592 (2021). https://doi.org/10.3103/S0735272721110030

    Article  Google Scholar 

  6. F. Castanié, Digital Spectral Analysis. Parametric, Non-Parametric and Advanced Methods (Wiley-ISTE, 2011). https://doi.org/10.1002/9781118601877

    Book  MATH  Google Scholar 

  7. L. R. Rabiner and R. W. Shafer, Theory and Applications of Digital Speech Processing (Pearson, Boston, 2010).

    Google Scholar 

  8. S. L. Marple, Digital Spectral Analysis with Applications, 2-nd ed. (Dover, Mineola, 2019).

    Google Scholar 

  9. V. V. Savchenko and L. V. Savchenko, J. Commun. Technol. Electron. 66, 1266 (2021). https://doi.org/10.31857/S0033849421110085

    Article  Google Scholar 

  10. A. Kazemipour, S. Miran, P. Pal, et al., IEEE Trans. Signal Process. 65 (9), 2333 (2017). https://doi.org/10.1109/TSP.2017.2656848

    Article  MathSciNet  Google Scholar 

  11. I. S. Gonorovskii, Radio Circuits and Signals, 3rd ed. (Sovetskoe Radio, Moscow, 1977) [in Russian].

    Google Scholar 

  12. F. Mustiere, M. Bouchard, and M. Bolic, IEEE Trans. ASLP-20, 705 (2012). https://doi.org/10.1109/TASL.2011.2163511

    Article  Google Scholar 

  13. A. V. Savchenko and V. V. Savchenko, Radioelectron. & Commun. Syst. 64, 300 (2021). https://doi.org/10.3103/S0735272721060030

    Article  Google Scholar 

  14. M. Tohyama, Acoustic Signals and Hearing (Academic, New York, 2020), p. 89. https://doi.org/10.1016/B978-0-12-816391-7.00013-9

    Book  Google Scholar 

  15. A. V. Savchenko and V. V. Savchenko, Meas Tech., 65 (2022). https://doi.org/10.1007/s11018-022-02104-6

  16. A. Palaparthi and I. R. Titze, Speech. Commun. 123, 98 (2020). https://doi.org/10.1016/j.specom.2020.07.003

    Article  Google Scholar 

  17. J. Ding, V. Tarokh, and Y. Yang, IEEE Trans. Inf. Theory 64, 4024 (2018). https://doi.org/10.1109/TIT.2017.2717599

    Article  Google Scholar 

  18. S. Y. Min and Y. K. Kim, J. Korea Academia-Industrial Cooperation Society, No. 11, 3558 (2010). https://doi.org/10.5762/KAIS.2010.11.9.3558

  19. V. V. Savchenko, Nauch. Vedom. Belgorod. Gos. Univ., Ser. Ekonomika. Informatika, No. 7 (34/1), 84 (2015). https://cyberleninka.ru/article/n/novaya-kontseptsiya-programmnogo-obespecheniya-statisticheskoy-obrabotki-informatsii-na-osnove-prognosticheskoy-funktsii-teorii.

  20. G. Sharma, K. Umapathy, and S. Krishnan, Appl. Acoust. 158, 107020 (2020). https://doi.org/10.1016/j.apacoust.2019.107020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Savchenko.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savchenko, V.V. Method for Autoregression Modeling of a Speech Signal Using the Envelope of the Schuster Periodogram as a Reference Spectral Sample. J. Commun. Technol. Electron. 68, 128–134 (2023). https://doi.org/10.1134/S1064226923020122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923020122

Navigation