Skip to main content
Log in

Hybrid Beamforming Full-Duplex Relay in Massive MIMO Systems

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

In this paper, we consider a point-to-point MIMO system with the amplified-and-forward full-duplex relay that the source can communicate with destination through the relay. The optimization problem for this scenario is non-convex, and finding the hybrid beamforming matrices, is a significant challenge. Here we propose two methods to design hybrid beamforming matrices in a full-duplex relay scenario. In the first method, we separate the transmitter and receiver sides of the relay and formulate the optimization problems. In the second method, we designed the beamforming relay matrices in a joint manner and proposed an algorithm to find a nearly-optimum full-duplex relay to achieve higher performance. Simulation results show that the joint optimization method achieves higher spectral efficiency than the separation method (first method). In addition the impact of the number of RF chains, is carried out by simulation. The simulation demonstrates that the number of antennas in the relay has an optimum value for a fixed number of RF chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. A. Nordrum and K. Clark, “Millimeter waves, massive MIMO, full duplex, beamforming, and small cells are just a few of the technologies that could enable ultrafast 5G networks,” IEEE Spectrum: Technology, Engineering, and Science News (27 Jan. 2017).

  2. T. Duong and N. Vo, “Wireless Communications and Networks for 5G and Beyond,” Mobile Networks and Applications (Springer), 22 443–446 (2019).

    Article  Google Scholar 

  3. L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin and R. Zhang, “An overview of massive MIMO: Benefits and challenges,” IEEE J. Sel. Top. Signal Process. 8 742–758 (2014).

    Article  Google Scholar 

  4. A. Kariminezhad and A. Sezgin, “Robust transceiver design for MIMO decode-and-forward full-duplex relay,” Mathematics, Computer Science, arXiv: 1901.08782 [cs.IT] (2019).

  5. E. Khordad, A. Khalili, and S. Akhlaghi, “Rate balancing in full-duplex MIMO two-way relay networks,” in Proc. 28th Wireless and Optical Communications Conf. (WOCC), 2019, Beijing, China, May 9–10, 2019 (WOCC, 2019).

  6. M. Toka and O. Kucur, “Performance of antenna selection schemes in dual hop full-duplex decode-and-forward relaying over Nakagami-m fading channels,” Int. J. Electron, and Commun. (AEU), 92–102 (2018).

  7. Y. Y. Kang and J. H. Cho, “Capacity of MIMO wireless channel with full-duplex amplify-and-forward relay,” in Proc. IEEE 20th Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC 2009), Tokyo, Japan, Sept. 13–16, 2009, (IEEE, New York, 2009), pp. 117–121.

  8. X. Xue, Y. Wang, L. Dai, and C. Masouros, “Relay hybrid precoding design in millimeter-wave massive MIMO systems,” IEEE Trans. Signal Process. 66, 2011–2026 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Smith and Y. Guo, “A comparison of methods for randomizing phase quantization errors in phased arrays,” IEEE Trans. Antennas and Propag. 31, 821–828 (1983).

    Article  Google Scholar 

  10. T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, “Wideband millimeter wave propagation measurements and channel models for future wireless communication system design,” IEEE Trans. Commun. 63, 3029–3056 (2015).

    Article  Google Scholar 

  11. D. Zhang, Y. Wang, X. Li, and W. Xiang, “Hybridly connected structure for hybrid beamforming in mmWave massive MIMO systems”, IEEE Trans. Commun. 66, 662–674 (2018).

    Article  Google Scholar 

  12. T. Lin, J. Cong, Y. Zhu, J. Zhang, and K. B. Letaief, “Hybrid beamforming for millimeter wave systems using the MMSE criterion,” IEEE Trans. Commun. 67, 3693–3708 (2019).

    Article  Google Scholar 

  13. H. Nguyen, T. Nguyen, V. Vo, and M. Voznak, “Hybrid full-duplex/half-duplex relay selection scheme with optimal power under individual power constraints and energy harvesting,” Comput. Commun. 124, 31–44 (2018).

    Article  Google Scholar 

  14. E. Khordad, A. Khalili, and S. Akhlaghi, “Rate balancing in full-duplex MIMO two-way relay networks,” in Proc. Wireless and Optical Communications Conf. (WOCC), Beijing, May 9–10 2019 (WOCC, 2019).

  15. Ayach, S., Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave mimo systems,” IEEE Trans. Wireless Commun. 13, 1499–1513 (2014).

    Article  Google Scholar 

  16. F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large scale antenna arrays,” IEEE J. Select. Top. Signal Process. 10, 501–513, (2016).

    Article  Google Scholar 

  17. Joel A. Tropp and Stephen J. Wright, “Computational methods for sparse solution of linear inverse problems,” Proc. IEEE (Spec. Iss.) 98, 948–958 (2010).

    Article  Google Scholar 

  18. S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process. 41, 3397–3415 (1993).

    Article  MATH  Google Scholar 

  19. J. C. Roh and B. D. Rao, “Design and analysis of MIMO spatial multiplexing systems with quantized feedback,” IEEE Trans. Signal Process. 54, 2874–2886 (2006).

    Article  MATH  Google Scholar 

  20. E. V. Haynsworth, On the Schur Complement. Basel Mathematical Notes BMN 20, 17 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Zahabi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Appendices

APPENDIX 1

MSE problem in receiver side of the relay is

$$\mathbb{E}\left[ {\left\| {{\mathbf{s}} - {\mathbf{W}}_{{{\text{R1}}}}^{H}{\mathbf{F}}_{{{\text{R1}}}}^{H}{{{\mathbf{y}}}_{{\text{R}}}}} \right\|_{2}^{2}} \right]$$
$$ = \mathbb{E}\left[ {{{{\left( {{\mathbf{s}} - {\mathbf{W}}_{{{\text{R1}}}}^{H}{\mathbf{F}}_{{{\text{R1}}}}^{H}{{{\mathbf{y}}}_{{\text{R}}}}} \right)}}^{H}}\left( {{\mathbf{s}} - {\mathbf{W}}_{{{\text{R1}}}}^{H}{\mathbf{F}}_{{{\text{R1}}}}^{H}{{{\mathbf{y}}}_{{\text{R}}}}} \right)} \right]$$
$$ = \mathbb{E}\left[ {{\text{tr}}\left( {\left( {{\mathbf{s}} - {\mathbf{W}}_{{{\text{R1}}}}^{H}{\mathbf{F}}_{{{\text{R1}}}}^{H}{{{\mathbf{y}}}_{{\text{R}}}}} \right){{{\left( {{\mathbf{s}} - {\mathbf{W}}_{{{\text{R1}}}}^{H}{\mathbf{F}}_{{{\text{R1}}}}^{H}{{{\mathbf{y}}}_{{\text{R}}}}} \right)}}^{H}}} \right)} \right]$$
$$ = {\text{tr}}\left( {\mathbb{E}\left[ {{\mathbf{s}}{{{\mathbf{s}}}^{H}}} \right]} \right) - 2R\left\{ {{\text{tr}}\left( {\mathbb{E}\left[ {{\mathbf{sy}}_{{\text{R}}}^{H}} \right]{{{\mathbf{F}}}_{{{\text{R}}1}}}{{{\mathbf{W}}}_{{{\text{R}}1}}}} \right)} \right\}$$
$$ + \,\,{\text{tr}}\left( {{\mathbf{W}}_{{{\text{R1}}}}^{H}{\mathbf{F}}_{{{\text{R1}}}}^{H}\mathbb{E}\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]{{{\mathbf{F}}}_{{{\text{R}}1}}}{{{\mathbf{W}}}_{{{\text{R}}1}}}} \right).$$

Since the optimization problem is done on Variables \({{{\mathbf{F}}}_{{{\text{R1}}}}}\) and \({{{\mathbf{W}}}_{{{\text{R1}}}}}\), we can add a phrase independent of these two variables. So we add, \({\text{tr}}\left( {{\mathbf{W}}_{{{\text{MMSE}}}}^{H}\mathbb{E}\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]{{{\mathbf{W}}}_{{{\text{MMSE}}}}}} \right) - {\text{tr}}\left( {\mathbb{E}\left[ {{\mathbf{s}}{{{\mathbf{s}}}^{H}}} \right]} \right)\), which is independent of the problem variables, and we have:

$$\begin{gathered} f = {\text{tr}}\left( {\mathbb{E}\left[ {{\mathbf{s}}{{{\mathbf{s}}}^{H}}} \right]} \right) - 2R\left\{ {{\text{tr}}\left( {\mathbb{E}\left[ {{\mathbf{sy}}_{{\text{R}}}^{H}} \right]{{{\mathbf{F}}}_{{{\text{R}}1}}}{{{\mathbf{W}}}_{{{\text{R}}1}}}} \right)} \right\} \\ + \,\,{\text{tr}}\left( {{\mathbf{W}}_{{{\text{R1}}}}^{H}{\mathbf{F}}_{{{\text{R1}}}}^{H}\mathbb{E}\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]{{{\mathbf{F}}}_{{{\text{R}}1}}}{{{\mathbf{W}}}_{{{\text{R}}1}}}} \right) \\ \end{gathered} $$
$$ + \,\,{\text{tr}}\left( {{\mathbf{W}}_{{{\text{MMSE}}}}^{H}\mathbb{E}\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]{{{\mathbf{W}}}_{{{\text{MMSE}}}}}} \right) - {\text{tr}}\left( {\mathbb{E}\left[ {{\mathbf{s}}{{{\mathbf{s}}}^{H}}} \right]} \right)$$
$$\begin{gathered} = {\text{tr}}\left( {{\mathbf{W}}_{{{\text{R1}}}}^{H}{\mathbf{F}}_{{{\text{R1}}}}^{H}\mathbb{E}\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]{{{\mathbf{F}}}_{{{\text{R1}}}}}{{{\mathbf{W}}}_{{{\text{R1}}}}}} \right) \\ - \,\,2R\left\{ {{\text{tr}}\left( {\mathbb{E}\left[ {{\mathbf{sy}}_{{\text{R}}}^{H}} \right]{{{\mathbf{F}}}_{{{\text{R}}1}}}{{{\mathbf{W}}}_{{{\text{R}}1}}}} \right)} \right\} \\ \end{gathered} $$
$$ + \,\,{\text{tr}}\left( {{\mathbf{W}}_{{{\text{MMSE}}}}^{H}\mathbb{E}\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]{{{\mathbf{W}}}_{{{\text{MMSE}}}}}} \right).$$

With knowing, \({\mathbf{W}}_{{{\text{MMSE}}}}^{H} = \mathbb{E}\left[ {{\mathbf{sy}}_{{\text{R}}}^{H}} \right]\mathbb{E}{{\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]}^{{ - 1}}}\),

$$\mathbb{E}\left[ {{\mathbf{sy}}_{{\text{R}}}^{H}} \right]{{{\mathbf{F}}}_{{{\text{R}}1}}}{{{\mathbf{W}}}_{{{\text{R}}1}}} = {\mathbf{W}}_{{{\text{MMSE}}}}^{H}\mathbb{E}\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]{{{\mathbf{F}}}_{{{\text{R}}1}}}{{{\mathbf{W}}}_{{{\text{R1}}}}}$$

and

$$\begin{gathered} {\text{tr}}\left( {\mathbb{E}\left[ {{\mathbf{sy}}_{{\text{R}}}^{H}} \right]{{{\mathbf{F}}}_{{{\text{R1}}}}}{{{\mathbf{W}}}_{{{\text{R1}}}}}} \right) \\ = {\text{tr}}\left( {\mathbb{E}\left[ {{\mathbf{sy}}_{{\text{R}}}^{H}} \right]\mathbb{E}{{{\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]}}^{{ - 1}}}\mathbb{E}\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]{{{\mathbf{F}}}_{{{\text{R}}1}}}{{{\mathbf{W}}}_{{{\text{R}}1}}}} \right), \\ \end{gathered} $$

the equation is simplified as follows:

$$\begin{gathered} f = {\text{tr}}\left( {{\mathbf{W}}_{{{\text{R1}}}}^{H}{\mathbf{F}}_{{{\text{R1}}}}^{H}\mathbb{E}\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]{{{\mathbf{F}}}_{{{\text{R}}1}}}{{{\mathbf{W}}}_{{{\text{R1}}}}}} \right) \\ - \,\,2R\left\{ {{\text{tr}}\left( {{\mathbf{W}}_{{{\text{MMSE}}}}^{H}\mathbb{E}\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]{{{\mathbf{F}}}_{{{\text{R1}}}}}{{{\mathbf{W}}}_{{{\text{R1}}}}}} \right)} \right\} \\ \end{gathered} $$
$$ + \,\,{\text{tr}}\left( {{\mathbf{W}}_{{{\text{MMSE}}}}^{H}\mathbb{E}\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]{{{\mathbf{W}}}_{{{\text{MMSE}}}}}} \right)$$
$$\begin{gathered} = {\text{tr}}\left( {\left( {{\mathbf{W}}_{{{\text{MMSE}}}}^{H} - {\mathbf{W}}_{{{\text{R1}}}}^{H}{\mathbf{F}}_{{{\text{R1}}}}^{H}} \right)\mathbb{E}\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]} \right. \\ \left. { \times \,\,{{{\left( {{\mathbf{W}}_{{{\text{MMSE}}}}^{H} - {\mathbf{W}}_{{{\text{R1}}}}^{H}{\mathbf{F}}_{{{\text{R1}}}}^{H}} \right)}}^{H}}} \right) \\ \end{gathered} $$
$$ = \mathbb{E}{{\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]}^{{\frac{1}{2}}}}\left\| {{{{\mathbf{W}}}_{{{\text{MMSE}}}}} - {{{\mathbf{F}}}_{{{\text{R1}}}}}{{{\mathbf{W}}}_{{{\text{R1}}}}}} \right\|_{{\text{F}}}^{2}.$$

So MSE problem on the receiver side of the relay node is:

$$\mathop {{\text{min }}}\limits_{{{{\mathbf{W}}}_{{{\text{R1}}}}},{{\;}}{{{\mathbf{F}}}_{{{\text{R}}1}}}} \mathbb{E}{{\left[ {{{{\mathbf{y}}}_{{\text{R}}}}{\mathbf{y}}_{{\text{R}}}^{H}} \right]}^{{\frac{1}{2}}}}\left\| {{{{\mathbf{W}}}_{{{\text{MMSE}}}}} - {{{\mathbf{F}}}_{{{\text{R1}}}}}{{{\mathbf{W}}}_{{{\text{R1}}}}}} \right\|_{{\text{F}}}^{2}.{{\;}}$$
$${\text{s}}.{\text{t}}.\,\,{{{\mathbf{F}}}_{{{\text{R}}1}}} \in {{\mathcal{F}}_{{{\text{R}}1}}}.$$

APPENDIX 2

The optimization problem in an optimal relay is

$$\mathop {\max ~}\limits_{{\mathbf{G}}~} {\text{lo}}{{{\text{g}}}_{2}}\left| {{{{\mathbf{I}}}_{{{{N}_{{\text{S}}}}}}} + \frac{\rho }{{{{N}_{{\text{S}}}}~}}{{{\mathbf{B}}}^{{ - 1}}}{{{\mathbf{H}}}_{{{\text{RD}}}}}{\mathbf{CG}}{{{\mathbf{H}}}_{{{\text{SR}}}}}{\mathbf{H}}_{{{\text{SR}}}}^{H}{\mathbf{H}}_{{{\text{RD}}}}^{H}} \right|,$$
$${\text{s}}.{\text{t}}.\,\,{\text{tr}}\left( {{\mathbf{CG}}\left( {{{{\mathbf{H}}}_{{{\text{SR}}}}}{{{\mathbf{W}}}_{{\text{S}}}}{\mathbf{W}}_{{\text{S}}}^{H}{\mathbf{H}}_{{{\text{SR}}}}^{H} + \sigma _{{{{{\mathbf{n}}}_{{{\text{SR}}}}}}}^{2}{{{\mathbf{I}}}_{{{{N}_{{\text{R}}}}}}}} \right){{{\mathbf{G}}}^{H}}{{{\mathbf{C}}}^{H}}} \right) \leqslant {{P}_{{\text{R}}}},$$

where \({\mathbf{C}} = {{\left( {{{{\mathbf{I}}}_{{{{M}_{{\text{R}}}}}}} - {{{\mathbf{F}}}_{{{\text{R2}}}}}{{{\mathbf{W}}}_{{\text{R}}}}{{{\mathbf{F}}}_{{{\text{R1}}}}}{{{\mathbf{H}}}_{{{\text{RR}}}}}} \right)}^{{ - 1}}}\) and \({\mathbf{B}} = \sigma _{{{{{\mathbf{n}}}_{{{\text{SR}}}}}}}^{2}{{{\mathbf{H}}}_{{{\text{RD}}}}}{\mathbf{CG}}{{{\mathbf{G}}}^{H}}{{{\mathbf{C}}}^{H}}{\mathbf{H}}_{{{\text{RD}}}}^{H} + \sigma _{{{{{\mathbf{n}}}_{{{\text{RD}}}}}}}^{2}{{{\mathbf{I}}}_{N}}\) is the Covariance matrix of the noise. \({{P}_{{\text{R}}}}\) and \(\rho \) are the relay total power and power coefficient, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golbabapour, M., Reza Zahabi, M. Hybrid Beamforming Full-Duplex Relay in Massive MIMO Systems. J. Commun. Technol. Electron. 68, 141–150 (2023). https://doi.org/10.1134/S1064226923020079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923020079

Keywords:

Navigation