Skip to main content
Log in

Electrodynamic Modeling of a Morgan Double-Layer Lens Based on Coupled Plane Waveguides

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A multibeam antenna based on a Morgan double-layer lens in the form of plane waveguides coupled via a frequency-periodic array is investigated. The lens synthesis problems are considered. The analytical model of coupled plane waveguides is constructed. The model uses the equivalent boundary conditions. It is verified using the electromagnetic modeling in the HFSS system. An approximate electromagnetic model of the antenna is proposed. The model is based on the representation of the structure electromagnetic field in the form of radial waves of coupled plane waveguides of the fundamental type. It is shown that, in the double-layer lens, the effect of its shading by irradiators is substantially attenuated. This fact makes it possible to form the system of rays with fan-shaped patterns, which provides for the space view in the azimuth angle sector of 360°. The possibility of formation of narrow rays with the low level of the side and back irradiation is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

REFERENCES

  1. W. Rotman, IRE Trans. Antennas Propag. 6, 96 (1958).

    Article  Google Scholar 

  2. S. Adachi, R. Rudduck, and C. Walter, IRE Trans. Antennas Propag. 9, 353 (1961).

    Article  Google Scholar 

  3. S. E. Bankov, Integrated Microwave Optics (Fizmatlit, Moscow, 2018) [in Russian].

    Google Scholar 

  4. Y. J. Cheng, W. Hong, and Ke Wu Y. Fan, IEEE Trans. Antennas Propag. 59, 40 (2011).

    Article  Google Scholar 

  5. M. Albani, M. Ettorre, S. Maci, et al., in First Eur. Conf. on Antennas and Propagation, Nice, France, Nov. 6–10, 2006 https://doi.org/10.1109/eucap.2006.4585023

  6. M. Ettorre, R. Sauleau, and L. Le Coq, IEEE Trans. Antennas Propag. 59, 1093 (2011).

    Article  Google Scholar 

  7. X. Wan, X. Shen, Y. Luo, and T. J. Cui, Laser & Photonics Rev. 8, 757 (2014).

    Article  Google Scholar 

  8. D.-H. Kwon and D. H. Werner, IEEE Antennas Propag. Mag. 52 (1), 24 (2010).

    Article  Google Scholar 

  9. O. Quevedo-Teruel, W. Tang, and Y. Hao, Opt. Lett. 37 (23), 4850 (2012).

    Article  Google Scholar 

  10. F. Kong, B.-I. Wu, J. A. Kong, et al., Appl. Phys. Lett. 91, 253509 (2007). https://doi.org/10.1063/1.2826283

    Article  Google Scholar 

  11. M. Rahm, S. A. Cummer, D. Schurig, et al., Phys. Rev. Lett. 100, 063903 (2008).

    Article  Google Scholar 

  12. D. R. Prado, A. V. Osipov, and O. Quevedo-Teruel, Opt. Lett. 40, 926 (2015).

    Article  Google Scholar 

  13. B. K. Tehrani, R. A. Bahr, W. Su, et al., in IEEE MTT-S Int. Microwave Symp., Honololu, USA, June 4–9 2017 (IEEE, New York, 2017), 1756. https://doi.org/10.1109/MWSYM.2017.8058985

  14. V. V. Akhiyarov, V. A. Kaloshin, and E. A. Nikitin, Zh. Radioelektron., No. 1 (2014). http://jre.cplire.ru/ jre/jan14/18/text.pdf.

  15. R. E. Clapp, IEEE Trans. Antennas Propag. 32, 661 (1984).

    Article  Google Scholar 

  16. S. E. Bankov, Zh. Radioelektron., No. 12 (2012). http://jre.cplire.ru/jre/dec12/6/text.html.

  17. S. P. Morgan, J. Appl. Phys. 29 (9), 1358 (1958).

    Article  MathSciNet  Google Scholar 

  18. S. E. Bankov, in Proc. 2020 7th All-Russian Microwave Conf. (RMC), Moscow, Nov. 25–27, 2020 (IEEE, New York, 2020), p. 171. https://ieeexplore.ieee.org/document/9312300.

    Google Scholar 

  19. S. E. Bankov and M. D. Duplenkova, J. Commun. Technol. Electron. 67, 495 (2022).

    Article  Google Scholar 

  20. D. M. Sazonov, Microwave Circuits and Antennas (Vysshaya Shkola, Moscow, 1988; Mir, Moscow, 1990).

  21. S. E. Bankov, J. Commun. Technol. Electron. 63, 315 (2018).

    Article  Google Scholar 

  22. G. T. Markov and A. F. Chaplin, Excitation of Electromagnetic Waves, 2nd ed. (Radio i Svyaz’, Moscow, 1988) [in Russian].

    Google Scholar 

  23. L. A. Vainshtein, Electromagnetic Waves, M.: Radio i Syaz’, 1988, p. 440 [in Russian]

Download references

Funding

This work was supported by the budget funding within the framework of state task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Bankov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Efimova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bankov, S.E., Duplenkova, M.D. Electrodynamic Modeling of a Morgan Double-Layer Lens Based on Coupled Plane Waveguides. J. Commun. Technol. Electron. 68, 97–110 (2023). https://doi.org/10.1134/S1064226923020018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923020018

Navigation