Skip to main content
Log in

Printed Slot Antenna Fed by CPW Supported by Broadband Planar Artificial Magnetic Conductor with Enhanced Features

  • ANTENNA AND FEEDER SYSTEMS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A low profile printed slot antenna (PSA) backed by broadband planar artificial magnetic conductor (AMC) is introduced in this study. Firstly, a suggested PSA with the radiating tapered slots excited by coplanar-waveguide (CPW) is used to expand the bandwidth in the measured range of 9–11 GHz (S11 ≤ –10 dB). Then, the suggested planar AMC surface as the ground plane of the antenna is inserted into the PSA to gain improved radiation efficiency. The realized result from the PSA with the 5 × 7 planar AMC array exhibits ‒10 dB measured impedance bandwidth from 6.63 to 13.70 GHz (almost 70%). The suggested PSA with AMC compared to the PSA without AMC exhibits a size reduction of 59.7%, enhanced bandwidth of almost 50%, and excellent impedance matching with uni-directional radiation patterns. The novel AMC unit cell is realized to operate at 10.14 GHz with an AMC bandwidth of 8–12.35 GHz (43.1%) for X-band operation. Besides, by introducing a specific method based on the reflection results of the equivalent waveguide feed, the number of AMC unit cells is investigated to obtain an optimal AMC array. In this approach, an equivalent waveguide feed corresponding to the center operating frequency is considered to choose the number of AMC array reflector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Z. Wang, Y. Sun, J. Yang, and Y. Zhang, “Interferograms of Votex FWM Beam for Nonlinear Spatial Filter in Photonic Band Gap,” IEEE Photonics Journal. 11 (1), 1854 (2019).

    Google Scholar 

  2. A. A. Roseline, K. Malathi, and A. K. Shrivastav, “Enhanced performance of a patch antenna using spiral-shaped electromagnetic bandgap structures for high-speed wireless networks,” IET Microw. Antennas Propag. 5 (14), 1750 (2011).

    Article  Google Scholar 

  3. A. Foroozesh and L. Shafai, “Investigation Into the Application of Artificial Magnetic Conductors to Bandwidth Broadening, Gain Enhancement and Beam Shaping of Low Profile and Conventional Monopole Antennas,” IEEE Trans. Antennas Propag. 59 (1), 4 (2011).

    Article  Google Scholar 

  4. S. Jam, H. Malekpoor, “Compact 1 × 4 patch antenna array by means of EBG structures with enhanced bandwidth,” Microw. Opt. Technol. Lett. 58 (12), 2983 (2016).

    Article  Google Scholar 

  5. H. Malekpoor and S. Jam, “Improved radiation performance of low profile printed slot antenna using wideband planar AMC surface,” IEEE Trans. Antennas Propag. 64 (11), 4626 (2016).

    Article  Google Scholar 

  6. W. Yang, H. Wang, W. Che, and J. Wang “A Wideband and High-Gain Edge-Fed Patch Antenna and Array Using Artificial Magnetic Conductor Structures,” IEEE Antennas Wireless Propag. Lett. 12, 769 (2013).

    Article  Google Scholar 

  7. S. Rajagopal, G. Chennakesavan, D. R. P. Subburaj, R. Srinivasan, and A. Varadhan, “A dual polarized antenna on a novel broadband multilayer Artificial Magnetic Conductor backed surface for LTE/CDMA/GSM base station applications,” AEU—Int. J. Electron. Commun. 80, 73 (2017).

    Article  Google Scholar 

  8. H. Malekpoor and M. Hamidkhani, “Performance Enhancement of Low-Profile Wideband Multi-Element MIMO Arrays Backed by AMC Surface for Vehicular Wireless Communications,” IEEE ACCESS 9, 166206 (2021).

    Article  Google Scholar 

  9. D. Nashaat, H. A. Elsadek, E. A. Abdallah, M. F. Iskander, and H. M. E. Hennawy, “Ultrawide bandwidth 2 × 2 microstrip patch array antenna using electromagnetic band-gap structure (EBG),” IEEE Trans. Antennas Propag. 59 (5), 1528 (2011).

    Article  Google Scholar 

  10. S. Barth and A. K. Iyer, “A Miniaturized Uniplanar Metamaterial-Based EBG for Parallel-Plate Mode Suppression,” IEEE Trans. Microw. Theory Tech. 64 (4), 1176 (2016).

    Article  Google Scholar 

  11. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alex’opolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47 (11), 2059 (1999).

    Article  Google Scholar 

  12. J. Y. Deng, J. Y. Li, L. Zhao, and L. X. Guo, “A Dual-Band Inverted-F MIMO Antenna with Enhanced Isolation for WLAN Applications, ” IEEE Antennas Wireless Propag. Lett. 6, 2270 (2017).

    Article  Google Scholar 

  13. S. Rajagopal, G. Chennakesavan, D. R. P. Subburaj, R. Srinivasan, and A. Varadhan, “A dual polarized antenna on a novel broadband multilayer Artificial Magnetic Conductor backed surface for LTE/CDMA/GSM base station applications,” AEU—Int. J. Electron. Commun. 80, 73 (2017).

    Article  Google Scholar 

  14. H. Lee, B. Lee, “Compact Broadband Dual-Polarized Antenna for Indoor MIMO Wireless Communication Systems,” IEEE Trans. Antennas Propag. 64, 766 (2016).

    Article  MathSciNet  Google Scholar 

  15. E. Ameri, S. H. Esmaeli, and S. H. Sedighy, “Wide band radar cross section reduction by thin AMC structure,” AEU—Int. J. Electron. Commun. 93, 150 (2018).

    Article  Google Scholar 

  16. S. Ghosh, T. N. Tran, and T. L. Ngoc, “Dual-Layer EBG Based Miniaturized Multi-Element Antenna for MIMO Systems,” IEEE Trans. Antennas Propag. 62 (8), 3985 (2014).

    Article  Google Scholar 

  17. X. Y. Liu, Y. H. Di, H. Liu, Z. Wu, and M. M. Tentzeris, “A Planar Windmill-like Broadband Antenna Equipped with Artificial Magnetic Conductor for Off-Body Communications,” IEEE Antennas Wireless Propag. Lett. 15, 64 (2015).

    Article  Google Scholar 

  18. A. T. Almutawa and G. Mumcu, “Small artificial magnetic conductor backed log-periodic microstrip patch antenna,” IET Microw. Antennas Propag. 7 (14), 1137 (2013).

    Article  Google Scholar 

  19. J. Zhu, S. Li, S. Liao, and Q. Xue, “Wideband Low-Profile Highly Isolated MIMO Antenna with Artificial Magnetic Conductor,” IEEE Antennas Wireless Propag. Lett. 17, 458 (2018).

    Article  Google Scholar 

  20. A. Ghosh, V. Kumar, G. Sen, and S. Das, “Gain enhancement of triple-band patch antenna by using triple-band artificial magnetic conductor,” IET Microw. Antennas Propag. 12 (8), 1400 (2018).

    Article  Google Scholar 

  21. N. Othman, N. A. Samsuri, M. Ka. A. Rahim, and K. Kamardin, “Low specific absorption rate and gain-enhanced meandered bowtie antenna utilizing flexible dipole-like artificial magnetic conductor for medical application at 2.4 GHz,” Microw Optical. Tech Lett. 62, 3881 (2020).

    Article  Google Scholar 

  22. M. E. de Cos, Y. Álvarez, and F. L. Heras, “Planar artificial magnetic conductor: design and characterization setup in the RFID SHF band,” IEEE Antennas Wireless Propag. Lett. 23, 1467 (2009).

    Google Scholar 

  23. R. C. Hadarig, M. E. de Cos, and F. L. Heras, “Novel miniaturized artificial magnetic conductor,” IEEE Antennas Wireless Propag. Lett. 12, 174 (2013).

    Article  Google Scholar 

  24. J. Y. Y. Sun and H. F. F. Li, “A novel planar patch antenna with dual band and diverse pattern characteristics,” Microw. Opt. Tech. Lett. 62 (1), 453 (2020).

    Article  Google Scholar 

  25. X. Yang, L. Ge, J. Wang, and C. Y. D. Sim, “A Differentially Driven Dual-Polarized High-Gain Planar Patch Antenna,” IEEE Antennas Wireless Propag. 17, 1181 (2018).

    Article  Google Scholar 

  26. K. D. Xu, H. Xu, Y. Liu, J. Li, and Q. H. Liu, “Microstrip Patch Antennas with Multiple Parasitic Patches and Shorting Vias for Bandwidth Enhancement,” IEEE Access. 6, 11624 (2018).

    Article  Google Scholar 

  27. H. Malekpoor, “Comparative investigation of reflection and band gap properties of finite periodic wideband artificial magnetic conductor surfaces for microwave circuits applications in X-band,” International Journal of RF and Microwave Computer-Aided Engineering. 29 (10), e21874 (2019).

    Article  Google Scholar 

  28. B. S. Cook and A. Shamim, “Flexible and compact AMC based antenna for telemedicine applications,” IEEE Trans. Antennas Propag. 61 (2), 524 (2013).

    Article  Google Scholar 

  29. D. Feng, H. Zhai, L. Xi, S. Yang, K. Zhang, and D. Yang, “A Broadband Low-Profile Circular-Polarized Antenna on an AMC Reflector,” IEEE Antennas Wireless Propag. Lett. 16, 2840 (2017).

    Google Scholar 

  30. H. Malekpoor, A. Abolmasoumi, and M. Hamidkhani, “High gain, high isolation, and low-profile two-element MIMO array loaded by the Giuseppe Peano AMC reflector for wireless communication systems,” IET Microw. Antennas Propag. 16 (1), 46 (2022).

    Article  Google Scholar 

  31. J. Liu, J. Y. Li, J. J. Yang, Y. X. Qi, and R. Xu, “AMC-Loaded Low-Profile Circularly Polarized Reconfigurable Antenna Array,” IEEE Antennas Wireless Propag. Lett. 19, 1276 (2020).

    Article  Google Scholar 

  32. G. Li, H. Zhai, L. Li, C. Liang, R. Yu, and S. Liu, “AMC-loaded wideband base station antenna for indoor access point in MIMO system,” IEEE Trans. Antennas Propag. 63 (2), 525 (2015).

    Article  Google Scholar 

  33. Y. W. Zhong, G. M. Yang, and L. R. Zhong, “Gain enhancement of bow-tie antenna using fractal wideband artificial magnetic conductor ground,” Electron. Lett. 51 (4), 315 (2015).

    Article  Google Scholar 

  34. J. P. Turpin, Q. Wu, D. H. Werner, B. Martin, M. Bray, and E. Lier, “Near-zero-index metamaterial lens combined with AMC metasurface for high-directivity low-profile antennas”, IEEE Trans. Antennas Propag. 62 (4), 1928 (2014).

    Article  Google Scholar 

  35. J. Joubert, J. C. Vardaxoglou, W. G. Whittow, and J. W. Odendaal, “CPW-fed cavity-backed slot radiator loaded with an AMC reflector,” IEEE Trans. Antennas Propag. 60 (2), 735 (2012).

    Article  Google Scholar 

  36. M. Alibakhshikenari, M. Khalily, B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, “Mutual Coupling Suppression between Two Closely Placed Microstrip Patches Using EM-Bandgap Metamaterial Fractal Loading”, IEEE Access 7, 23606 (2019).

    Article  Google Scholar 

  37. M. Alibakhshikenari, B. S. Virdee, C. H. See, R. Abd-Alhameed, A. H. Ali, F. Falcone, and E. Limiti, “Study on Isolation Improvement Between Closely Packed Patch Antenna Arrays Based on Fractal Metamaterial Electromagnetic Bandgap Structures”, IET Microw, Antennas & Propag. 12 (14), 2241 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Malekpoor.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossein Malekpoor, Mojtaba Shahraki Printed Slot Antenna Fed by CPW Supported by Broadband Planar Artificial Magnetic Conductor with Enhanced Features. J. Commun. Technol. Electron. 67, 375–386 (2022). https://doi.org/10.1134/S1064226922330014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922330014

Keywords:

Navigation