Skip to main content
Log in

Turbo Demodulation Algorithm for NOMA Systems

  • THEORY AND METHODS OF INFORMATION PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Recently, developers of future generation communication systems have shown great interest in nonorthogonal multiple access (NOMA) technology, which shows promises of a significant increase in the spectral efficiency and capacity of such systems. Communication systems using NOMA technology belong to the class of so-called overloaded systems (in contrast to OMA systems), since the number of users in them significantly exceeds the number of orthogonal resources. The price for increasing the number of users due to the non-orthogonality of signals is a significant increase in the complexity of processing user group signals. This article discusses well-known reception algorithms with different complexity and proposes a new, less complex demodulator that takes into account the discrete nature of NOMA signals and uses sequential turbo processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. M. Shirvanimoghaddam, M. Dohler, and S. J. Johnson, “Massive non-orthogonal multiple access for cellular IoT: Potentials and limitations,” IEEE Commun. Mag. 55 (9), 55–61 (2017).

  2. M. Vaezi, H. V. Poor, and Z. Ding, Multiple Access Techniques for 5G Wireless Networks and Beyond (Springer, 2019).

    Book  Google Scholar 

  3. M. G. Bakulin, V. B. Kreindelin, and D. Yu. Pankratov, Technologies in the Systems of a Radio Communication on the Way to 5G (Goryachaya Liniya-Telekom, Moscow, 2018).

    Google Scholar 

  4. Z. Ding et al., “Application of non-orthogonal multiple access in LTE and 5G networks,” IEEE Commun. Mag. 55 (2), 185–191 (2017).

  5. V. B. Kreindelin and D. Yu. Pankratov, “Nonlinear iterative algorithms of the multiuser demodulation,” Radiotekhnika, No. 8, 42–46 (2004).

  6. Y. Liu et al., “Nonorthogonal multiple access for 5G and beyond,” Proc. IEEE 105, 2347–2381 (2017).

  7. PP TR 38.812 V16.0.0 (2018-12), Tech. Rep., 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Non-Orthogonal Multiple Access (NOMA) for NR (Release 16), (2018).

  8. Y. Yuan, Z. Yuan, and L. Tian, “5G Non-orthogonal multiple access study in 3GPP,” IEEE Commun. Mag. 58 (7), 90–96 (2020).

  9. M. G. Bakulin, T. B. K. Ben Rezheb, V. B. Kreindelin, D. Yu. Pankratov, and A. E. Smirnov, “NOMA technology with code division in 3GPP: 5G or 6G,” T‑Comm: Telekomm. i Transport 16 (1), 4–14 (2022).

  10. S. Han et al., “Energy efficiency and spectrum efficiency co-design: from NOMA to network NOMA,” IEEE Multimedia Commun. Tech. Commit. E-Lett. 9 (5), 21–22 (2014).

  11. L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey of non-orthogonal multiple access for 5G,” IEEE Commun. Surveys & Tutorials 20 (3), 2294–2323 (2018).

  12. B. Makki, K. Chitti, A. Behravan, and M. Alouini, “A survey of NOMA: Current status and open research challenges,” IEEE Open J. Commun. Soc. 1, 179–189 (2020).

  13. M. G. Bakulin, V. B. Kreindelin, and A. P. Shumov, “Not orthogonal multiple access: main directions and opportunities,” Tsifr. Obrab. Sign., No. 4, 21–350 (2020).

  14. L. M. Fink, Discrete Communication Theory, 2nd Ed. (Sovetskoe Radio, Moscow, 1970) [in Russian].

    Google Scholar 

  15. P. Wang et al., “Comparison of orthogonal and nonorthogonal approaches to future wireless cellular systems,” IEEE Veh. Technol. Mag. 1 (3), 4–11 (2006).

  16. H. Nikopour and H. Baligh, “Sparse code multiple access,” in Proc. 24th IEEE Ann. Int. Symp. on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, United Kingdom, Sept. 8–11, 2013 (IEEE, New York, 2013), pp. 332–336.

  17. 3GPP, R1-1802767, “Signature design for NoMA,” Ericsson, RAN1-92, Athens, Feb. (2018).

  18. S. Chen, B. Ren, Q. Gao, S. Kang, S. Sun, and K. Niu, “Pattern sivision multiple access. A novel nonorthogonal multiple access for fifth-generation radio networks,” IEEE Trans. on Vehicular Technol., 66 (4), 3185–3196 (2017).

  19. R. Hoshyar, F. P. Wathan, and R. Tafazolli, “Novel low-density signature for synchronous CDMA systems over AWGN channel,” IEEE Trans. on Signal Process. 56, 1616–1626 (2008).

  20. X. Meng, Y. Wu, Y. Chen, and M. Cheng, “Low complexity receiver for uplink SCMA system via expectation propagation,” in Proc. Wireless Commun. and Networking Conf. (WCNC), San Francisco, CA, USA, March 19–22, 2017 (WCNC, 2017), pp. 1–5.

  21. F. L. Luo and C. J. Zhang Signal Processing for 5G: Algorithms and Implementations (Wiley-IEEE Press, 2016).

    Book  Google Scholar 

  22. C. Yan, A. Harada, A. Benjebbour, Y. Lan, A. Li, and H. Jiang, “Receiver design for downlink non-orthogonal multiple access (NOMA),” in Proc. of 2015 IEEE 81st Vehicular Technol. Conf., (VTC Spring), UK, Glasgow, 2015 (IEEE, New York, 2015).

  23. S. Adnan, Y. Fu, J. S. Ahmed, J. Naveed, R. Asif, and A. Ghulam, “An improved CoSaMP multiuser detection for uplink grant free NOMA system,” 11 (4), 831–836 (2020).

  24. M. G. Bakulin, R. T. B. K. Ben, V. B. Kreindelin, and A. E. Smirnov, “Decrease in computing complexity of detecting of the signal in the MIMO systems,” Elektrosvyaz’, No. 3, 22–27 (2021).

  25. E. Khorov, A. Kureev, I. Levitsky, and I. F. Akyildiz, “Prototyping and experimental study of non-orthogonal multiple access in Wi-Fi networks,” IEEE Network, 34 (4), 210–217 (2020).

  26. V. I. Tikhonov and V. N. Kharisov, Statistical analysis and synthesis of wireless devices and systems: School textbook for college (Radio i Svyaz’, Moscow, 1991) [in Russian].

    Google Scholar 

  27. M. G. Bakulin, V. B. Kreindelin, V. A. Grigor’ev, et al., “Bayesian estimation with consecutive refusal and accounting of aprioristic knowledge,” J. Commun. Technol. Electron. 65, 257–266 (2020).

  28. B. Xiao, K. Xiao, S. Zhang, Z. Chen, B. Xia, and H. Liu, “Iterative detection and decoding for SCMA systems with LDPC codes,” in Int. Conf. on Wireless Communications & Signal Processing (WCSP), Nanjing, China, Oct. 15–17, 2015 (WCSP, 2015), pp. 1–5.

  29. J. Liu, G. Wu, S. Li, and O. Tirkkonen, “On fixed-point implementation of Log-MPA for SCMA signals,” IEEE Wireless Commun. Lett. 5 (3), 324–327 (2016).

  30. M. G. Bakulin, “Turbo processing of signals: theory and applications,” Naukoemkie Tekhnol., No. 3, 18–26 (2003).

  31. Q. Luo, P. Gao, Z. Liu, L. Xiao, Z. Mheich, P. Xiao, and A. Maaref, “An error rate comparison of power domain non-orthogonal multiple access and sparse code multiple access,” IEEE Open J. Commun. Soc. 2, 500–511 (2021).

  32. M. G. Bakulin, V. B. Kreyndelin, D. Y. Pankratov, and A. G. Stepanova, “Iterative massive MIMO demodulation method with non-Gaussian approximation,” J. Commun. Technol. Electron. 67, 740–746 (2022).

  33. T. Ben Rejeb, M. G. Bakulin, V. B. Kreyndelin, D. Y. Pankratov, and A. E. Smirnov, “Performance analysis of uplink non-orthogonal multiple access (NOMA),” Systems of Signals Generating and Processing in the Field of on Board Communications, 1–5 (2022).

  34. M. G. Bakulin, V. B. Kreindelin, D. Yu. Pankratov, and A. G. Stepanova, “New approach to problems of MIMO detecting and multiuser demodulation,” Inf. Protsessy 21 (2), 93–107 (2021).

  35. F. R. Kschischang, B. J. Frey, and H. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. on Inform. Theory 47, 498–519 (1998).

Download references

Funding

This work was supported by the Ministry of Digital Development, Communications, and Mass Media of the Russian Federation, state contract no. P33-1-26/8, Development of a New Technology of NOMA and its Use Together with MIMO Technology for advanced 6G Communication Systems (code “MIMO-NOMA”), dated February 26, 2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. G. Bakulin, T. B. K. Ben Rejeb, V. B. Kreyndelin, D. Yu. Pankratov or A. E. Smirnov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakulin, M.G., Ben Rejeb, T.B., Kreyndelin, V.B. et al. Turbo Demodulation Algorithm for NOMA Systems. J. Commun. Technol. Electron. 67 (Suppl 2), S255–S266 (2022). https://doi.org/10.1134/S1064226922140017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922140017

Navigation