Skip to main content
Log in

Modeling the Structure of an Oxide Solar Cell

  • PHYSICAL PROCESSES IN ELECTRON DEVICES
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The article discusses numerical simulation of an oxide solar cell based on a Cu2O/TiO2 pn heterojunction that was carried out to optimize its structure and increase the efficiency of energy conversion. The influence of layer thicknesses, concentrations of acceptors and donors in Cu2O and TiO2 layers, as well as the work function of the back contact material on the photoelectric parameters of the solar cell is studied. It was found that the optimal thickness of Cu2O and TiO2 layers is 1.5 µm and 100 nm, respectively. It is shown that to obtain a high efficiency of a solar cell, the concentration of acceptors in the Cu2O layer should be 1016 cm–3, and the concentration of donors in the TiO2 layer should be 1019 cm–3. It has been found that the work function of the back contact material must be at least 4.9–5 eV in order to achieve high efficiency values. The most suitable contact materials for Cu2O are Ni, C and Cu. For a solar cell based on a Cu2O/TiO2 pn heterojunction, a maximum efficiency of 10.21% was obtained (short circuit current density 9.89 mA/cm2, open circuit voltage 1.38 V, fill factor 74.81%). The results can be used in the development and formation of heterostructures of inexpensive oxide solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Perez-Tomas Amador, Adv. Mat. Interfaces 6, 1900471 (2019).

    Article  Google Scholar 

  2. P. Sawicka-Chudy, M. Sibinski, R. Pawelek, G. Wisz, B. Cieniek, P. Potera, P. Szczepan, S. Adamiak, M. Cholewa, and L. Glowa, AIP Advances 9, 055206 (2019).

    Article  Google Scholar 

  3. M. Pavan, S. Ruhle, A. Ginsburg, D. A. Keller, H.‑Noa. Barad, P. M. Sberna, D. Nunes, R. Martins, A. Y. Anderson, A. Zaban, and E. Fortunato, Solar Energy Materials and Solar Cells 132, 549 (2015).

    Article  Google Scholar 

  4. R. T. Mouchou, T. C. Jen, O. T. Laseinde, and K. O. Ukoba, Mater. Today: Proc. 38, 835 (2021).

    Google Scholar 

  5. Z. Vakulov, D. Khakhulin, E. Zamburg, A. Mikhaylichenko, V. A. Smirnov, R. Tominov, V. S. Klimin, and O. A. Ageev, Materials 14, 4854 (2021).

    Article  Google Scholar 

  6. Thanh Tai Nguyen, Malkeshkumar Patel, Sangho Kim, Rameez Ahmad Mir, Junsin Yi, Vinh-Ai Dao, and Joondong Kim, J. Power Sources 481, 228865 (2021).

    Article  Google Scholar 

  7. G. Wisz, P. Sawicka-Chudy, M. Sibinski, Z. Starowiczc, D. Plocha, A. Goral, M. Bester, M. Cholewa, J. Wozny, and A. Sosna-Glebsk, Opto-Electron. Rev. 29, 97 (2021).

    Google Scholar 

  8. Liu Mingzhen, M. B. Johnston, and H. J. Snaith, Nature 501, 393 (2013).

    Google Scholar 

  9. D. A. Kudryashov, A. S. Gudovskikh, A. V. Babichev, A. V. Filimonov, A. M. Mozharov, V. F. Agekyan, E. V. Borisov, A. Yu. Serov, and N. G. Filosofov, Semiconductors 51, 11 (2017).

    Article  Google Scholar 

  10. A. V. Saenko, S. P. Malyukov, A. V. Palii, and E. V. Goncharov, Prikl. Fiz., No. 2, 45 (2021).

  11. Lingyan Lin, Linqin Jiang, Ping Li, Baodian Fan, and Yu Qiu, J. Phys. & Chem. Solids. 124, 205 (2019).

    Article  Google Scholar 

  12. A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, Appl. Phys. Lett. 88, 163502 (2006).

    Article  Google Scholar 

  13. M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films 361362, 527 (2000).

  14. T. Minemoto and M. Murata, J. Appl. Phys. 116, 054505 (2014).

    Article  Google Scholar 

  15. D. Himanshu, P. Deepak, and P. S. Kumar, J. Int. & Electron. Light 179, 969 (2019).

    Article  Google Scholar 

  16. S. P. Malyukov, A. V. Sayenko, and A. V. Ivanova, in IOP Conf. Series: Materials Science and Engineering, 2016, Vol. 151, p. 012033.

  17. A. V. Saenko, S. P. Malyukov, and A. A. Rozhko, Prikl. Fiz., No. 1, 19 (2022).

  18. T. Minemoto, Yu Kawano, T. Nishimura, and J. Chantana, Opt. Mater. 92, 60 (2019).

    Article  Google Scholar 

  19. K. Patel Piyush, Sci. Rep. 11, 3082 (2021).

    Article  Google Scholar 

  20. S. Abdelaziz, A. Zekry, A. Shaker, and M. Abouelatta, Opt. Mater. 101, 109738 (2020).

    Article  Google Scholar 

  21. N. Singh, A. Agarwal, and M. Agarwal, Solar Energy 208, 399 (2020).

    Article  Google Scholar 

  22. K. Yu, Ch. Jakapan, N. Takahito, and M. Takashi, Solar Energy Mater. & Solar Cells. 205, 110252 (2020).

    Article  Google Scholar 

  23. G. B. Stefanovich, A. L. Pergament, P. P. Boriskov, V. A. Kuroptev, and T. G. Stefanovich, Semiconductors 50, 639 (2016).

    Article  Google Scholar 

  24. F. Behrouznejad, S. Shahbazi, and N. Taghavinia, Wud Hui-Ping, Eric Wei-Guang Diau, J. Mater. Chem. A 4, 13488 (2016).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 19-29-03041 mk, as well as by the Government of the Russian Federation, Agreement no. 075-15-2022-1123.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Saenko, V. S. Klimin, A. A. Rozhko or S. P. Malyukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saenko, A.V., Klimin, V.S., Rozhko, A.A. et al. Modeling the Structure of an Oxide Solar Cell. J. Commun. Technol. Electron. 67 (Suppl 1), S108–S114 (2022). https://doi.org/10.1134/S1064226922130204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922130204

Keywords:

Navigation