Skip to main content
Log in

Model of the Influence of the Absorption Coefficient of the Medium at Various Concentrations of Glucose and Saturation Level on the Optoacoustic Signal in the Blood

  • APPLICATIONS OF RADIOTECHNOLOGY AND ELECTRONICS IN BIOLOGY AND MEDICINE
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

On the basis of the optoacoustic effect, the absorption coefficient of the biological medium was calculated depending on the hemoglobin concentration and blood saturation. The above method will allow for the diagnosis of blood composition for a quantitative assessment of hemoglobin content. The ongoing studies made it possible to establish the process of increasing the absorption coefficient of the medium with an increase in the concentration of glucose in the blood and, as a result, a decrease in the amplitude of the OA signal. The dependence of the OA signal amplitude on the tissue absorption coefficient was calculated at blood saturation levels of 60, 80, and 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (Nauka, Moscow, 1991).

    Google Scholar 

  2. D. A. Kravchuk, I. B. Starchenko, D. V. Orda-Zhigulina, and K. A. Voronina, Akust. Zh., No. 67, 345 (2021).

  3. I. I. Garipov, Vest. Kazan. Tekhnol. Univ., No. 18 (2014).

  4. E. V. Kozhokhina, Nauchno-Tekhn. Vestn. Inf. Tekhnol., Mekh. & Opt., No. 2(72), 157 (2011).

  5. R. Nachabe, D. J. Evers, B. H. Hendriks, Lucas-M. Van der Voort, J. Wesseling, and T. J. Ruers, Biomed. Opt. Express 2, 600 (2011).

    Google Scholar 

  6. S. A. Lysenko, Methods of Optical Diagnostics of Biological Objects (BGU, Minsk, 2014).

    Google Scholar 

  7. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, Appl. Phys. Lett. 90, 053901 (2007).

    Article  Google Scholar 

  8. J. A. Swearingen, S. H. Holan, M. M. Feldman, and J. A. Viator, Proc. SPIE–Int. Soc. Opt. Eng. 15, 016019 (2010).

    Google Scholar 

  9. R. A. Kruger and R. B. Lam, D. R. Reinecke, S. D. Del Rio, and R.P. Doyle, Med. Phys. 37, 6096 (2010).

    Article  Google Scholar 

  10. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nature Biotechnol. 24, 848 (2006).

    Article  Google Scholar 

  11. C. Cai, D. A. Nedosekin, Yu. A. Menyaev, M. Sarimollaoglu, M. A. Proskurnin, and V. P. Zharov, Analyt. Cellular Pathol. 2016 (2016).

  12. D. A. Kravchuk, Prikl. Fiz., No. 6, 63 (2021).

  13. D. A. Kravchuk and K. A. Voronina, J. Biomed. Photonics Eng. 6, 010307 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kravchuk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchuk, D.A. Model of the Influence of the Absorption Coefficient of the Medium at Various Concentrations of Glucose and Saturation Level on the Optoacoustic Signal in the Blood. J. Commun. Technol. Electron. 67 (Suppl 1), S88–S90 (2022). https://doi.org/10.1134/S1064226922130186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922130186

Keywords:

Navigation