Skip to main content
Log in

Estimation of the Wi-Fi Network Capacity when Using Restricted Access Window with Short Slots

  • DATA TRANSMISSION IN COMPUTER NETWORKS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The progress on the Internet of Things brings a challenge of providing communications to a tremendous number of simultaneously connected devices. The more stations are transmitting in a wireless network, the higher is the contention for the channel and the slower is the data transmission. The IEEE 802.11ah standard introduces a Restricted Access Window (RAW) mechanism that allows reducing contention for the channel by reservation of channel time for a predefined group of stations. This study is aimed at estimating the network capacity, i.e., the maximum number of stations in a RAW that allows satisfying the requirements for the reliability and data delivery delay at specified channel timeshare restriction and traffic intensity. To estimate the network capacity, an analytical model for servicing sparse traffic when using a periodic RAW with short slots is developed. The problem of optimizing the parameters of a periodic RAW is solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. L. Zheng, L. Cai, J. Pan, and M. Ni, “Performance analysis of grouping strategy for dense IEEE 802.11 Networks,” in Proc. 2013 IEEE Global Communications Conf. (Globecom), Atlanta, IEEE, 2013 (IEEE, New York, 2013), pp. 219–224.

  2. A. Hazmi, B. Badihi, A. Larmo, J. Torsner, M. Valkama, et al., “Performance analysis of IoT-Enabling IEEE 802.11 ah technology and its RAW mechanism with non-cross slot boundary holding schemes,” Proc. 2015 IEEE 16th Int. Symp. on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Boston,2015 (IEEE, New York, 2015), pp. 1–6.

  3. M. Mahesh and V. P. Harigovindan, “Restricted access window-based novel service differentiation scheme for group-synchronized DCF,” IEEE Commun. Lett. 23 (5), 900–903 (2019).

    Article  Google Scholar 

  4. N. Nawaz, M. Hafeez, S. Ali R. Zaidi, D. C. McLernon, and M. Ghogho, Throughput Enhancement of Restricted Access Window for Uniform Grouping Scheme in IEEE 802.11 ah (2017), pp. 1–7.

  5. L. Zheng, M. Ni, L. Cai, J. Pan, C. Ghosh, K. Doppler, “Performance analysis of group-synchronized DCF for dense IEEE 802.11 Networks,” IEEE Trans. on Wireless Commun. 13 (11), 6180–6192 (2014).

    Article  Google Scholar 

  6. U. Sangeetha and A. Babu, “Performance analysis of IEEE 802.11 ah wireless local area network under the restricted access window-based mechanism,” Int. J. Commun. Syst. 32 (4), (2019).

  7. O. Raeesi, J. Pirskanen, A. Hazmi, T. Levanen, M. Valkama, Performance Evaluation of IEEE 802.11 ah and its Restricted Access Window Mechanism (2014), pp. 460–466.

  8. C. W. Park, D. Hwang, and T. J. Lee, Enhancement of IEEE 802.11 ah MAC for M2M Communications, IEEE Commun. Lett. 18 (7), 1151–1154 (2014).

    Article  Google Scholar 

  9. E. Khorov, A. Lyakhov, and R. Yusupov, “Two-slot based model of the IEEE 802.11 ah restricted access window with enabled transmissions crossing slot boundaries,” in Proc. IEEE 19th Int. Symp. on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Chania, 2018 (IEEE, New York, 2018), pp. 1–9.

  10. C. Kai, J. Zhang, X. Zhang, and W. Huang, “Energy-efficient sensor grouping for IEEE 802.11 ah networks with max-min fairness guarantees,” IEEE Access, 7, 102284–102294 (2019).

    Article  Google Scholar 

  11. G. C. Madueno, Č. Stefanović, and P. Popovski, “Reliable and efficient access for alarm-initiated and regular M2M traffic in IEEE 802.11 ah systems,” IEEE Internet Things J. 3 (5), 673–682 (2015).

    Article  Google Scholar 

  12. Y. Wang, K. K. Chai, Y. Chen, J. Schormans, and J. Loo, “Energy-aware restricted access window control with retransmission scheme for IEEE 802.11 ah (Wi-Fi HaLow) based networks,” in Proc. 2017 13th Annual Conf. on Wireless On-Demand Network Systems and Services (WONS), Jackson, IEEE, 2017 (IEEE, New York, 2017), pp. 69–76.

  13. M. Z. Ali, J. Misić, and V. B. Misić, “Efficiency of restricted access window scheme of IEEE 802.11 ah under non-ideal channel condition,” in Proc. 2018 IEEE Int. Conf. on Int. Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data, Halifax, (SmartData), 2018 (IEEE, New York, 2018), pp. 251–256.

  14. M. Z. Ali, J. Misić, and V. B. Misić, “Performance Evaluation of Heterogeneous IoT Nodes with Differentiated QoS in IEEE 802.11 ah RAW Mechanism,” IEEE Trans. Vehicular Technol. 68 (4), 3905–3918 (2019).

    Article  Google Scholar 

  15. E. Khorov, A. Krotov, A. Lyakhov, R. Yusupov, M. Condoluci, M. Dohler, and I. Akyildiz, “Enabling the internet of things with Wi-Fi HaLow—performance evaluation of the restricted access window,” IEEE Access 7, 127402–127415 (2019).

    Article  Google Scholar 

  16. D. Bankov, E. Khorov, A. Lyakhov, and J. Famaey, “Resource allocation for machine-type communication of energy-harvesting devices in Wi-Fi HaLow networks,” Sensors 20 (9), 2449 (2020).

    Article  Google Scholar 

  17. A. Kureev, D. Bankov, E. Khorov, and A. Lyakhov, “Improving efficiency of heterogeneous Wi-Fi networks with joint usage of TIM segmentation and restricted access window,” in Proc. 2017 IEEE 28th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, 2017 (IEEE, New York, 2017), pp. 1–5.

  18. E. Khorov, A. Krotov, and A. Lyakhov, “Modelling machine type communication in IEEE 802.11 ah networks,” in Proc. 2015 IEEE Int. Conf. on Commun. Workshop (ICCW), London, 2015 (IEEE, London, 2015), pp. 1149–1154.

  19. E. Khorov, A. Lyakhov, I. Nasedkin, R. Yusupov, J. Famaey, and I. F. Akyildiz, “Fast and reliable alert delivery in mission-critical Wi-Fi HaLow sensor networks,” IEEE Access, 8, 14302–14313 (2020).

    Article  Google Scholar 

  20. E. Zazhigina, R. Yusupov, E. Khorov, and A. Lyakhov, “Analytical study of periodic restricted access window mechanism for short slots,” MDPI Electronics 10 (5), 549 (2021).

    Article  Google Scholar 

  21. E. M. Khorov, A. I. Lyakhov, I. A. Nasedkin, et al., “Emergency alert delivery in a heterogeneous Wi-Fi HaLow network,” J. Commun. Technol. Electron. 64, 1517–1522 (2019).

    Article  Google Scholar 

  22. M. Shimokawa, K. Sanada, H. Hatano, and K. Mori, “Station grouping method for non-uniform station distribution in IEEE 802.11 ah based IoT networks,” in Proc. 2020 IEEE 91st Vehicular Technol. Conf. (VTC2020-Spring), 2020 (IEEE, New York, 2020), pp. 1–5.

  23. R. Nishida, M. Shimokawa, K. Sanada, H. Hatano, and K. Mori, “A station grouping method considering heterogeneous traffic and multiple data rates for IEEE 802.11 ah networks with non-uniform station deployment,” in Proc. 2022 IEEE 95th Vehicular Technol. Conf. (VTC2022-Spring), 2022 (IEEE, New York, 2020), pp. 1–5.

  24. V. M. Vishnevsky and A. I. Lyakhov, “IEEE 802.11 wireless LAN: saturation throughput analysis with seizing effect consideration,” Cluster Comput. 5 (2), 133–144 (2002).

    Article  Google Scholar 

  25. G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE J. on Selected Areas in Commun. 18 (3), 535–547 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Zazhigina, R. R. Yusupov, E. M. Khorov or A. I. Lyakhov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zazhigina, E.A., Yusupov, R.R., Khorov, E.M. et al. Estimation of the Wi-Fi Network Capacity when Using Restricted Access Window with Short Slots. J. Commun. Technol. Electron. 67 (Suppl 1), S176–S184 (2022). https://doi.org/10.1134/S1064226922130150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922130150

Keywords:

Navigation