Skip to main content
Log in

Reflectography of Artworks in the 0.9–1.7 μm Wavelength Using a SWIR Camera

  • NOVEL RADIO SYSTEMS AND ELEMENTS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Icon “The Miracle of St. George about the Serpent” (the first third of the 18th century) and painting “Still Life with Chum Salmon” (M. Sokolov, 1930s) are studied with the aid of IR reflectography using a short-wave IR camera (0.9–1.7 µm). Hidden elements of the image that are not observed in the visible spectral range are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. “Technology and Research of Works of Easel and Wall Painting,” by Ed. Yu. I. Grenberg (GOSNIIR, Moscow, 2000).

  2. J. R. J. van Asperen de Boer, “Infrared Reflectography: a Method for the Examination of Paintings,” Appl. Opt. 7 (9), 1711 (1968).

    Article  Google Scholar 

  3. J. R. J. van Asperen de Boer, “Infrared Reflectograms of Panel Paintings,” Stud. Conserv. 11 (1), 45 (1966).

    Article  Google Scholar 

  4. L. Beck, “Non-Destructive Portable Analytical Techniques for Carbon In-Situ Screening Before Sampling for Dating Prehistoric Rock Paintings,” Radiocarbon 55 (3–4), 436–444 (2013).

  5. C. M. Falco, “Invited Article: High Resolution Digital Camera for Infrared Reflectography,” Rev. Sci. Instrum. 80, 071301 (2009).

    Article  Google Scholar 

  6. D. Gavrilov et al., in Proc. 9th Int. Conf. NDT of Art, Jerusalem, Israel, May, 2008.

  7. J. Striova et al., “Spectral imaging and archival data in analysing madonna of the rabbit paintings by Manet and Titian,” Angew. Chemie Int. Ed. 57 (25), 7408 ̶ 7412 (2018).

  8. G. Buxbaum and G. Pfaff, Industrial Inorganic Pigments, Third Edition (Willey, Michigan, 2005).

    Book  Google Scholar 

  9. F. Mercuri et al., “Combined use of infrared imaging techniques for the study of underlying features in the Santa Maria in Cosmedin Altarpiece,” Archaeometry 63, 1009–1023 (2021).

  10. P. Betts et al., “Hyperspectral and multispectral reflectance imaging of paintings,” Microsc. Microanal. 27 (1), 3008 (2021).

    Article  Google Scholar 

  11. I. Cazzaniga et al., “A multi-analytical non-invasive approach to aqueous cleaning systems in treatments on bowed string musical instruments,” Coatings 11 (2), 150 (2021).

    Article  Google Scholar 

  12. G. H. Li et al., “An automatic hyperspectral scanning system for the technical investigations of Chinese scroll paintings,” Microchem. J. 155 (8), 104699 (2020).

    Article  Google Scholar 

  13. R. Fontana et al., “Multi-spectral IR reflectography,” O3A: Opt. Arts, Architec., & Archaeol. 6618, 661813 (2007).

    Google Scholar 

  14. C. Daffara et al., “Scanning multispectral IR reflectography SMIRR: An advanced tool for art diagnostics,” Acc. Chem. Res. 43, 847–856 (2010).

  15. S. Sugawara et al., “Preliminary study for detection of adhesive on a painted ceramic plate and varnish on printed paper using near-infrared hyperspectral imaging at wavelengths of 1.0–2.35 µM,” Infrared Phys. Technol. 117, 103809 (2021).

    Article  Google Scholar 

  16. E. Walmsley et al., “Improved visualization of underdrawings with solid-state detectors operating in the infrared,” Stud. Conserv. 39 (4), 217 (1994).

    Google Scholar 

  17. A. Cosentino, “Identification of Pigments by Multispectral Imaging; a Flowchart Method,” Herit. Sci. 2 (1), 8 (2014).

    Article  Google Scholar 

  18. V. P. Ponomarenko, Quantum Photosensitivity (AO “NPO Orion”, Moscow, 2018) [in Russian].

  19. V. P. Ponomarenko, I. D. Burlakov, V. S. Popov, and S. V. Popov, Successes of Infrared Photosensory (Orion R&P Association, Moscow, 2021) [in Russian].

    Google Scholar 

  20. M. Gargano, N. Ludwig, and G. Poldi, “A new methodology for comparing IR reflectographic systems,” Infrared Phys. Technol. 49 (3), 249–253 (2007).

    Article  Google Scholar 

  21. K. A. Khamidullin et al., “Short-wave infrared camera with a focal plane array based on InGaAs/InP heterostructures,” J. Commun. Tech. Electron. 64, 319–324 (2019).

  22. S. J. Gaffey, “Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns): calcite, aragonite, and dolomite,” Am. Mineral. 71 (1–2), 151 (1986).

    Google Scholar 

  23. “Pigments Checker v.5 FREE Spectra Databases,” Cultural Heritage Science Open Source—CHSOS. 2022.02.02. https://chsopensource.org/pigments-checker/.

  24. E. Cloutis, L. Norman, M. Cuddy, and P. Mannet, “Spectral Reflectance (350–2500 nm) Properties of Historic Artists’ Pigments. II. Red–Orange–Yellow Chromates, Jarosites, Organics, Lead (-Tin) Oxides, Sulphides, Nitrites and Antimonates,” J. Near Infrared Spectros. 24 (2), 119 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Popov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.S., Pershin, D.S., Khrabrov, P.V. et al. Reflectography of Artworks in the 0.9–1.7 μm Wavelength Using a SWIR Camera. J. Commun. Technol. Electron. 67 (Suppl 1), S66–S74 (2022). https://doi.org/10.1134/S1064226922130071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922130071

Navigation