Skip to main content
Log in

Acoustic Birefrindence in a Composite Magnetoacoustic Resonator

  • PHYSICAL PROCESSES IN ELECTRON DEVICES
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The 1D model of an acoustic resonator structure with a ferromagnetic layer on a nonmagnetic substrate and piezoelectric thin-film piezoelectric transducer is considered. The double resonance conditions, i.e., the magnetoelastic resonance in a magnetic layer and purely elastic resonance in the whole multilayer structure are investigated. The acoustic generation of spin waves in these conditions is characterized by the behavior of the electric impedance of a transducer in the magnetic field. The analytical expression for the impedance is obtained. This expression is derived taking into account the disorientation of the transducer polarization and magnetic field. The numerical calculations show that even the weak disorientation ~5° causes the manifestation of the acoustic birefringence phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Puebla, Y. Hwang, S. Maekawa, and Y. Otani, Appl. Phys. Lett. 120, 220502 (2022).

    Article  Google Scholar 

  2. Y. Li, C. Zhao, W. Zhang, et al., APL Mater. 9, 060902 (2021).

    Article  Google Scholar 

  3. O. S. Latcham, Y. I. Gusieva, A. V. Shytov, et al., Appl. Phys. Lett. 115, 4 (2019).

    Article  Google Scholar 

  4. K. An, A. N. Litvinenko, R. Kohno, et al., Phys. Rev. B 101, 060407 (2020).

    Article  Google Scholar 

  5. A. Kamra, H. Keshtgar, P. Yan, and G. E. W. Bauer, Phys. Rev. B 91, 104409 (2015).

    Article  Google Scholar 

  6. A. V. Azovtsev, A. I. Nikitchenko, and N. A. Pertsev, Phys. Rev. Mater. 5, 054601 (2021).

    Article  Google Scholar 

  7. S. Cherepov, P. K. Amiri, and J. G. Alzateetal, Appl. Phys. Lett. 104, 082403 (2014).

    Article  Google Scholar 

  8. W.-G. Yang and H. Schmidt, Appl. Phys. Rev. 8, 0213047 (2021).

    Google Scholar 

  9. M. Geilen, A. Nicoloiu, D. Narducci, et al., Appl. Phys. Lett. 120, 242404 (2022).

    Article  Google Scholar 

  10. M. Küß, M. Heigl, L. Flacke, et al., Phys. Rev. Appl. 15, 034046 (2021).

  11. K. Uchida, T. An, Y. Kajiwara, et al., Appl. Phys. Lett. 99, 212501 (2011).

    Article  Google Scholar 

  12. S. Bhuktare, A. Bose, H. Singh, and A. A. Tulapurkar, Scientific Rep. 7, 840 (2017).

    Article  Google Scholar 

  13. P. Chowdhury, A. Jander, and P. Dhagat, IEEE Magnetics Lett. 8, 3108204 (2017).

    Article  Google Scholar 

  14. N. Polzikova, S. Alekseev, I. Kotelyanskii, et al., J. Appl. Phys. 113, 17C704 (2013).

  15. N. I. Polzikova, S. G. Alekseev, and A. O. Raevskii, J. Commun. Technol. Electron. 66, 1296 (2021).

    Article  Google Scholar 

  16. S. G. Alekseev, S. E. Dizhur, N. I. Polzikova, et al., Appl. Phys. Lett. 117, 072408 (2020).

    Article  Google Scholar 

  17. N. I. Polzikova, S. G. Alekseev, V. A. Luzanov, and A. O. Raevskiy, Phys. Solid State 62, 2211 (2018).

    Article  Google Scholar 

  18. N. I. Polzikova, S. G. Alekseev, I. I. Pyataikin, et al., AIP Advances 8, 056128 (2018).

    Article  Google Scholar 

  19. S. G. Alekseev, N. I. Polzikova, and A. O. Raevskiy, J. Commun. Technol. Electron. 64, 1318 (2019).

    Article  Google Scholar 

  20. N. I. Polzikova, S. G. Alekseev, V. A. Luzanov, and A. O. Raevskiy, J. Magn. Magn. Mater. 479, 38 (2019).

    Article  Google Scholar 

  21. Y. Tserkovnyak, A. Brataas, and G. E.W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).

    Article  Google Scholar 

  22. E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  23. S. G. Alekseev, I. M. Kotelyanskii, N. I. Polzikova, and G. D. Mansfeld, J. Commun. Technol. Electron. 60, 300 (2015).

    Article  Google Scholar 

  24. C. Kittel, Phys. Rev. 110, 836 (1958).

    Article  MathSciNet  Google Scholar 

  25. V. A. Luzanov, J. Commun. Technol. Electron. 62, 1182 (2017).

    Article  Google Scholar 

  26. V. A. Luzanov, S. G. Alekseev, and N. I. Polzikova, J. Commun. Technol. Electron. 63, 1076 (2018).

    Article  Google Scholar 

  27. G. S. Kaino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing (Prentice-Hall, Englewood Cliffs, 1987; Mir, Moscow, 1990).

  28. N. F. Foster, G. A. Coquin, G. A. Rozgony, and F. A.Vanatta, IEEE Trans. Sonics Ultrason. 15, 28 (1968).

    Article  Google Scholar 

  29. B. Lüethi, J. Appl. Phys. 37, 990 (1966).

    Article  Google Scholar 

Download references

Funding

This work was carried out within the framework of the state task “Spintronics” and partly supported by the Russian Foundation for Basic Research, project no. 20-07-01075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Polzikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Efimova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polzikova, N.I., Alekseev, S.G. Acoustic Birefrindence in a Composite Magnetoacoustic Resonator. J. Commun. Technol. Electron. 67, 1459–1464 (2022). https://doi.org/10.1134/S1064226922120166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922120166

Navigation