Skip to main content
Log in

Clustering Models Based on Graph Edge Coloring

  • INFORMATION TECHNOLOGY IN ENGINEERING SYSTEMS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The paper addresses the combinatorial problem of edge colored clustering in graphs. A brief structured survey on the problems and their applications in communication networks and computer systems is presented. Basic mathematical formulation of the problem of edge colored clustering in graphs is described. A multicriteria problem statement is suggested. Numerical examples illustrate the considered problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. L. Addario-Berry, R. E. L. Aldred, K. Dalal, and B. A. Reed, Vertex coloring edge partitions. J. Combin. Theory Ser. B 94, 237–244 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ageev and A. Kononov, “Improved approximation for the max k-colored clustering problem,” in Int. Workshop on Approximation and Online Algorithms WAOA 2014, (Springer, LNCS 8952, 2015), pp. 1–10.

  3. E. A. Albacea, “A parallel algorithm for edge-coloring of graphs with edge-disjoint cycles,” Inf. Process. Lett. 43, 309–314 (1992).

  4. Y. M. Alhamdan and A. Kononov, “Approximability and inapproximability for maximum k-edge–colored clustering problem,” in Proc. 14th Int. Conf. CSR-2019, Novosibirsk, July 1–5, 2019 (Springer, 2019), pp. 1–13.

  5. S. Altinakar, G. Caporossi, and A. Hertz, “On compact k-edge-coloring: a polynomial time reduction from linear to cycle,” Discr. Optim. 8, 502–512 (2011).

    Article  MATH  Google Scholar 

  6. E. Angel, E. Bampis, A. Kononov, D. Paparas, E. Pountourakis, and V. Zissimopoulos, “Clustering on k-edge-colored graphs,” in K. Chatterjee and J. Sgall (eds), MFCS, Klosterneuburg, Austria, 2013, (LNCS 8087, Springer, 2013), pp. 50–61.

  7. E. Angel, E. Bampis, A. V. Kononov, D. Paparas, E. Pountourakis, and V. Zissimopoulos, “Clustering on k-edge-colored graphs,” Discr. Appl. Math. 211, 15–22 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. P. de Aragao and E. Uchoa, “The -connected assignment problem,” Eur. J. Oper. Res. 118, 127–138 (1999).

    Article  MATH  Google Scholar 

  9. J. Araujo, N. Nisse, and S. Perennes, “Weighted coloring in trees,” SIAM J. Discrete Math. 28 (4), 2029–2041 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Araujo, J. Baste, and I. Sau, “Ruling out FPT algorithms for weighted coloring on forests,” Theor. Comput. Sci. 729, 11–19 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Araujo, V. A. Campos, C. V. G. C. Lima, V. F. Santos, I. Sau, and A. Silva, “Dual parameterization of weighted coloring,” Algorithmica 82, 2316–2336 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Bampis, A. Kononov, G. Lucarelli, and I. Milis, “Bounded max-colorings of graphs,” J. Discr. Algorithms 26, 56–68 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Barnier and P. Brisset, “Graph coloring for air traffic flow management,” Ann. Oper. Res. 130, 163–178 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Beauquier, S. Perennes, and D. Toth, “All-to-all routing and coloring in weighted tree of rings,” in Proc. Eleventh Ann. ACM Symp. on Parallel Algorithms and Architectures SPAA’99,Saint-Maio, France, June 27–30, 1999, pp. 185–190.

  15. A. Benjamin, G. Chartrand, and P. Zhang, “The Fascinating World of Graph Theory,” (Princeton Univ. Press, Princeton, NJ, 2015).

    Book  MATH  Google Scholar 

  16. R. Benkoczi, R. Daha, and D. R. Gaur, “Exact algorithms for weighted coloring in special classes of tree and cactus graphs,” in: V. Makinen, S. J. Pugglisi, and L. Salmela (eds), Proc. 27th Int. Workshop on Combinatorial Algorithms IWOCA 2016 (Springer, LNCS 9843, 2016), pp. 347–358.

  17. G. Bongiovanni, D. Coppersmith, and C. K. Wong, “An optimum time slot assignment algorithm for an SS/TDMA system with variable number of transponders,” IEEE Trans. on Commun. 29, 721–726 (1981).

    Article  MathSciNet  Google Scholar 

  18. D. Bozdag, A. H. Gebremedhin, F. Manne, E. G. Boman, and U. Catalyurek, “A framework for scalable greedy coloring on distributed memory parallel computers,” J. Parallel and Distributed Computing 68, 515–535 (2008).

    Article  MATH  Google Scholar 

  19. L. Cai and O.-Y. Leung, “Alternating path and colored clustering,” Electr. Preprint, (Jul. 27, 2018). http://arxiv. org/abs/1807.10531 [cs.DS].

  20. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, 3rd ed. (MIT Press & McGraw-Hill, 2009).

  21. M. Demange, B. Escoffier, J. Monnot, and V. T. Paschos, “Weighted coloring on planar, bipartite and split graphs: complexity and approximation,” Discr. Appl. Math. 157, 819–832 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Demange, D. de Werra, J. Monnot, and V. Th. Paschos, “Time slot scheduling of compatible jobs,” J. of Scheduling 10, 111–127 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Escoffier, J. Monnot, and V. T. Paschos, “Weighted coloring: further complexity and approximability results,” Inf. Proc. Lett. 97 (3), 98–103 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  24. U. Feige and J. Vondrak, “Approximation algorithm for allocation problem improving the factor 1 – 1/e,” in Proc. 47 Ann. IEEE Symp. on Foundations of Computer Science FOCS 2006 (IEEE, New York, 2006), pp. 667–676.

  25. G. Finke, V. Jost, M. Queyranne, and A. Sebo, “Batch processing with interval graph compatibilities between tasks,” Discr. Appl. Math. 156, 556–568 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. R. Garey and D. S. Johnson, Computers and Intractability. The Guide to the Theory of NPCompleteness (W. H. Freeman and Company, San Francisco, 1979).

    MATH  Google Scholar 

  27. A. Gibbons and W. Rytter, “Optimally edge-coloring outerplanar graphs is IN NC,” Theor. Comp. Sci. 71, 401–411 (1990).

    Article  MATH  Google Scholar 

  28. R. Govindarajan and S. Rengarajan, “Buffer allocation in regular dataflow networks: an approach based on coloring circular-arc graphs,” in Proc. 3rd Int. Conf. on High Performance Computing (HiPC), IEEE, Trivandum, India, Dec. 19–22, 1996 (IEEE, New York, 1996), pp. 419–424.

  29. D. J. Guan and X. Zhu, “A coloring problem for weighted graphs,” Inf. Proc. Lett. 61 (2), 77–81 (1997).

  30. A. Hawbani, X. Wang, H. Kuhlani, A. Ghannami, M. U. Farooq, and Y. Al-sharabi, “Extracting overlapped sub-regions in wireless sensor networks,” Wireless Networks 25, 4705–4726 (2019).

    Article  Google Scholar 

  31. T. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman, “A survey of gossiping and broadcasting in communication networks,” Networks 18, 319–349 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  32. K. Jansen and P. Scheffler, “Generalized coloring for tree-like graphs,” Discr. Appl. Math. 75 (2), 135–155 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  33. T. Januaro, S. Urrutia, C. C. Ribeiro, and D. de Werra, “Edge coloring: a natural model for sport scheduling,” Eur. J. Oper. Res. 254 (1), 1–8 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  34. T. R. Jensen and B. Toft, Graph Coloring Problems (Wiley, New York, 1995).

    MATH  Google Scholar 

  35. D. S. Johnson and M. A. Trick, (eds), Cliques, Coloring, and Satisfiability, DIMACS Ser. in Discr. Math. & Theor. Computer Sci. (AMS, Providence, 1996), Vol. 20.

  36. A. Kesselman and K. Kogan, “Nonpreemptive scheduling of optical switches,” IEEE Trans. on Commun. 55, 1212–1219 (2007).

    Article  Google Scholar 

  37. J. M. Kleinberg and K. Ligett, “Information-sharing and privacy in social networks,” Games & Econ. Behavior 82, 702–716 (2013).

    Article  MATH  Google Scholar 

  38. C. T. Kovalyov, M. Y. Ng, and T. C. E. Cheng, “Fixed interval scheduling: models, applications, computational complexity and algorithms,” Eur. J. Oper. Res. 178, 331–342 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Kubale, “The complexity of scheduling independent two-processor tasks on dedicated processors,” Inf. Proc. Lett. 24, 141–147 (1987).

  40. M. Kubale and K. Piwakowski, “A linear time algorithm for edge coloring of binomial trees,” Discr. Math. 150, 247–256 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  41. R. Labahn, S. T. Hedetniemi, and R. Laskar, “Periodic gossiping on trees,” Discr. Appl. Math. 53, 235–245 (1994).

  42. X. Lai and Z. Lu, “Multistart iterated tabu search for bandwidth coloring problem,” Comp. & Oper. Res. 40, 1401–1409 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  43. M. S. Levin, On combinatorial clustering: literature review, methods, examples. J. Commun. Technol. Electron. 60 (12), 1403–1428 (2015).

    Article  Google Scholar 

  44. M. S. Levin, “Note on k-edge colored clustering (preliminary version),” Preprint, (2022). https://doi.org/10.13140/RG.2.2.12933.22248

  45. R. Lewis, J. Thompson, C. Mumford, and J. Gillard, “A wide-ranging computational comparison of highperformance graph colouring algorithms,” Comp. and Oper. Res. 39, 1933–1955 (2012).

    Article  MATH  Google Scholar 

  46. R. M. R. Lewis, A Guide to Graph Coloring: Algorithms and Applications (Springer, 2016).

    Book  Google Scholar 

  47. A. L. Liesman and D. Richards, “Network communication in edge-colored graphs: gossiping,” IEEE Trans. Parallel Distrib. Systems 4, 438–445 (1993).

    Article  Google Scholar 

  48. S.-M. Lo, W.-H. Lin, C. Chen, and Y.-C. Tseng, “Optimal coloring for data collection in tree-based wireless sensor networks,” Theor. Comput. Sci. 700, 23–36 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  49. G. Lucarelli, I. Milis, and V. Th. Paschos, “Maximum edge coloring of trees,” Electr. Preprint, (Jan. 26, 2009). http://arxiv.org/abs/0901.4002 [cs.DS].

  50. G. Lucarelli and I. Mills, “Improved approximation algorithms for the Max Edge-Coloring problem,” Inf. Proc. Lett. 111 (16), 819–823 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  51. R. Mahapatra, S. Samanta, T. Allahviranloo, and M. Pal, “Radio fuzzy graphs and assignment of frequency in radio stations,” Comput. & Appl. Math. 38 (3), art. 117, 1–20 (2019).

  52. R. Mahapatra, S. Samanta, and M. Pal, “Applications of edge colouring of fuzzy graphs. Informatica” 31, 313–330 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  53. E. Malaguti and P. Toth, “An evolutionary approach for bandwidth multicoloring problems,” Eur. J. Oper. Res. 189, 638–651 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  54. E. Malaguti, M. Monaci, and P. Toth, “Models and heuristic algorithms for a weighted vertex coloring problem,” J. Heuristics 15, 503–526 (2009).

    Article  MATH  Google Scholar 

  55. E. Malaguti and P. Toth, “A survey on vertex coloring problems,” Int. Trans. in Oper. Res. 17, 1–34 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  56. C. McDiarmid and B. Reed, “Channel assignment and weighted coloring,” Networks 36, 114–117 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Mishra, S. Banerjee, and W. Arbaugh, “Weighted coloring based channel assignment for WLANs,” SIGMOBILE Mob. Comput. Commun. Rev. 9 (3), 19–31 (2005).

    Article  Google Scholar 

  58. S. Mitchell and S. Hedetniemi, “Linear algorithms for edge coloring trees and unicyclic graphs,” Inf. Process. Lett. 9, 110–112 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  59. A. Nadolski, “Compact cyclic edge-colorings of graphs,” Discr. Math. 308, 2407–2417 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  60. A. Navarra, C. M. Pinotti, and A. Formisano, “Distributed colorings for collision-free routing in sink-centric sensor networks,” J. Discrete Algorithms 14, 232–247 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  61. P. Panigrahi, “A survey on radio k-colorings of graphs,” AKSE Int. J. Graphs & Combin. 6 (1), 161–169 (2009).

    MathSciNet  MATH  Google Scholar 

  62. S. V. Pemmaraju, R. Raman, and K. R. Varadarajan, “Buffer minimization using max-coloring,” in Proc. 15th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’04), 2004, pp. 562–571.

  63. S. V. Pemmaraju and R. Raman, “Approximation algorithms for the max-coloring problem,” in Proc. 32nd Int. Colloquium on Automata, Languages and Programming (ICALPT05), 2005 (LNCS 3580, Springer, 2005). pp. 1064–1075.

  64. N. R. Sabar, M. Ayob, R. Qu, and G. Kendall, “A graph coloring constructive hyper-heuristic for examination timetabling problems,” Appl. Intell. 37 (1), 1–11 (2012).

    Article  Google Scholar 

  65. L. Saha and P. Panigrahi, “A lower bound for radio k‑chromatic number,” Discr. Appl. Math. 192, 87–100 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  66. D. Sannyasi, “Improved approximation algorithms for weighted edge coloring of graphs,” Electr. Preprint, (Dec. 30, 2021). http://arxiv.org/abs/2012.15056 [cs.DS].

  67. Q. Yan, X. Tang, Q. Chen, and M. Cheng, “Placement delivery array design through strong edge coloring of bipartite graphs,” IEEE Commun. Lett. 22, 236–239 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sh. Levin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, M.S. Clustering Models Based on Graph Edge Coloring. J. Commun. Technol. Electron. 67, 1570–1577 (2022). https://doi.org/10.1134/S1064226922120130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922120130

Navigation