Skip to main content
Log in

Formation of Two-Color Radiation with Controlled Rotation of the Polarization Plane

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A method is proposed for the formation of two-color optical radiation with a rotating polarization vector, the rotation frequency of which is determined by the acoustic frequency. The method is based on acousto-optic (AO) diffraction of two-color radiation by an acoustic wave and the interference of circularly polarized beams with different frequencies. The rotation of polarization of two-color radiation is experimentally demonstrated for wavelengths of 0.488 × 10–4 and 0.514 × 10–4 cm using two AO Bragg cells made of a gyrotropic TeO2 crystal. Polarization rotation with a frequency of about 109 MHz is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, Physical Principles of Acousto-Optics (Radio i Svyaz’, Moscow, 1985) [in Russian].

    Google Scholar 

  2. J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design and Applications (Wiley, New York, 1992).

    Google Scholar 

  3. V. M. Kotov, Acousto-Optics. Bragg Diffraction of Multi-Color Radiation (Yanus-K, Moscow, 2016) [in Russian].

    Google Scholar 

  4. E. A. Konshina and D. S. Kostomarov, Opt. Zh., No. 10, 88 (2007).

  5. G. F. Kolbina, A. E. Grishchenko, Yu. N. Sazanov, and I. N. Shtennikova, Vysokomol. Soedin. Ser. A 51, 1104 (2009).

    Google Scholar 

  6. Pharmaceutical Chemistry: Textbook, Ed. by G. V. Ramenskaya (Binom. Lab. Znanii, Moscow, 2015) [in Russian].

    Google Scholar 

  7. V. S. Rinkevichus, Laser Anemometry (Energiya, Moscow, 1978).

    Google Scholar 

  8. V. P. Koronkevich and V. A. Khanov, Modern Laser Interferometers (Nauka, Novosibirsk, 1985).

    Google Scholar 

  9. V. P. Klochkov, L. F. Kozlov, I. V. Potykevich, and M. S. Soskin, Laser Anemometry, Remote Spectroscopy, and Interferometry. Reference Book (Naukova Dumka, Kiev, 1985).

    Google Scholar 

  10. S. N. Antonov, V. M. Kotov, and V. N. Sotnikov, Zh. Tekh. Fiz. 61, 161 (1991).

    Google Scholar 

  11. A. D. Kersey, A. Dandridge, and W. K. Burns, Electron. Lett. 22, 935 (1986).

    Article  Google Scholar 

  12. V. M. Kotov, Kvant. Elektron. 24, 471 (1997).

    Google Scholar 

  13. J. Shamir and Y. Fainman, Appl. Opt. 21, 364 (1982).

    Article  Google Scholar 

  14. V. M. Kotov, S. V. Averin, E. V. Kotov, et al. Kvant. Elektron. 47, 135 (2017).

    Article  Google Scholar 

  15. V. M. Kotov and E. V. Kotov, Opt. Zh. 84 (6), 51 (2017).

    Google Scholar 

  16. V. M. Kotov and E. V. Kotov, Kvant. Elektron. 48, 773 (2018).

    Article  Google Scholar 

  17. V. M. Kotov, S. V. Averin, and E. V. Kotov, Opt. Zh. 86 (3), 3 (2019).

    Google Scholar 

  18. V. M. Kotov, Opt. Spektrosk. 74, 493 (1994).

    Google Scholar 

  19. Acoustic Crystals, Ed. by M. P. Shaskol’skaya (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  20. V. A. Kizel’ and V. I. Burkov, Gyrotropy of Crystals (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  21. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Clarendon Press, Oxford, 1957; Mir, Moscow, 1967).

  22. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, Oxford, 1964; Nauka, Moscow, 1973).

  23. B. Cretin, W.-X. Xie, S. Wang, and D. Hauden, Opt. Commun. 65 (3), 157 (1988).

    Article  Google Scholar 

  24. V. A. Grechikhin, Development and Analysis of Computer Algorithms for Processing of One-Particle Signals of Laser Doppler Anemometers Cand. Sci. (Tech. Sci.) Dissertation (MEI, Moscow, 1996).

Download references

Funding

This work was supported by the State Contract of the Kotelnikov Institute of Radioengineering and Electronics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kotov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotov, V.M. Formation of Two-Color Radiation with Controlled Rotation of the Polarization Plane. J. Commun. Technol. Electron. 67, 1105–1112 (2022). https://doi.org/10.1134/S106422692209008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422692209008X

Navigation