Skip to main content
Log in

Modern Photodetector IR-Modules

  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

In recent years, there has been a rapid improvement in photonics products due to the use of multilayer heterostructures grown on the basis of advanced materials; designing the structure of a photosensitive element (PSE) to achieve the minimum dark current, which in turn leads to a change in generations of matrix photodetector modules (PDMs). Several different types of PDMs based on InSb epitaxial structures for the range of 3–5 μm, based on GaAs/AlGaAs QWIP-structures for the range 7.8–9.0 μm, and based on InGaAs XBn-structures for the range 0.9–1.7 μm were developed and investigated. The foreign analogs are shown, and the advantages given by the new capabilities offered by new detector technologies are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. A. Rogalski, Prog. Quantum Electron., No. 36, 342 (2012).

  2. K. O. Boltar, N. I. Iakovleva, A. A. Lopukhin, and P. V. Vlasov, Prikl. Fiz., No. 6, 30 (2021).

  3. K. O. Boltar, I. D. Burlakov, N. I. Iakovleva, P. A. Polessky, P. A. Kuznetsov, P. S. Lazarev, V. S. Rudnevsky, and M. V. Sednev, Usp. Prikl. Fiz. 9, 479 (2021).

    Article  Google Scholar 

  4. K. O. Boltar, A. A. Lopukhin, P. V. Vlasov, and N. I. Iakovleva, Usp. Prikl. Fiz. 9, 513 (2021).

    Article  Google Scholar 

  5. N. Péré-Laperne, J. Berthoz, R. Taalat, L. Rubaldo, A. Kerlain, and E. Carrère, Proc. SPIE 9819, 981920 (2016).

    Article  Google Scholar 

  6. Y. Reibelo, A. Rouvie, A. Nedelcu, T. Augey, N. Pere-Laperne, L. Rubaldo, and D. Billon-Lanfrey, Proc. SPIE 8896, 88960B (2013).

    Article  Google Scholar 

  7. H. Lutz, R. Breiter, D. Eich, H. Figgemeier, R. Oelmaier, S. Rutzinger, H. Schenk, and J. Wendler, Proc. SPIE 10177, 101771A (2017).

    Google Scholar 

  8. G. Gershon, E. Avnon, M. Brumer, W. Freiman, Y. Karni, T. Niderman, O. Ofer, T. Rosenstock, D. Seref, N. Shiloah, L. Shkedy, R. Tessler, and I. Shtrichman, Proc. SPIE 10177, 101771I (2017).

    Article  Google Scholar 

  9. P. Klipstein, O. Klin, S. Grossman, N. Snapi, I. Lukomsky, M. Brumer, M. Yassen, D. Aronov, E. Berkowicz, A. Glozman, T. Fishman, O. Magen, I. Shtrichman, and E. Weiss, Proc. SPIE 8012, 80122R (2011).

    Article  Google Scholar 

  10. M. Razeghi, Eur. Phys. J. AP, No. 23, 149 (2003).

  11. A. Rouvié, O. Huet, S. Hamard, J. P. Truffer, M. Pozzi, J. Decobert, E. Costard, M. Zécri, P. Maillart, Y. Reibel, and A. Pécheur, Proc. SPIE 8704, 870403 (2013).

    Article  Google Scholar 

  12. P. C. Klipstein, Proc. SPIE ̶ Int. Soc. Opt. Eng. 6940, 6940-2U (2008).

    Google Scholar 

  13. Y. Arslan, T. Colakoglu, G. Torunoglu, O. Aktas, and C. Besikci, Infrared Phys. & Technol. 59, 108 (2013).

    Article  Google Scholar 

  14. P. C. Klipstein, Y. Livneh, A. Glozman, S. Grossman, O. Klin, N. Snapi, and E. Weiss, J. Electron. Mater. 43, 2984 (2014).

    Article  Google Scholar 

  15. L. Rubaldo, R. Taalat, J. Berthoz, M. Maillard, N. Péré-Laperne, A. Brunner, P. Guinedor, L. Dargent, A. Manissadjian, Y. Reibel, and A. Kerlain, Proc. SPIE 10177, 101771E (2017).

    Article  Google Scholar 

  16. O. Cocle, Ch. Rannou, B. Forestier, P. Jougla, P. F. Bois, E. M. Costard, A. Manissadjian, and D. Gohier, SPIE Defense & Security 6542, 127 (2007).

    Google Scholar 

  17. A. K. Bakarov, A. K. Gutakovsky, K. S. Zhuravlev, A. P. Kovchavtsev, A. I. Toropov, I. D. Burlakov, K. O. Boltar’, P. V. Vlasov, and A. A. Lopukhin, Tech. Phys. 87, 915 (2017).

    Article  Google Scholar 

  18. I. D. Burlakov, K. O. Boltar, P. V. Vlasov, A. A. Lopukhin, A. I. Toropov, K. S. Juravlev, and V. V. Fadeev, Prikl. Fiz., No. 3, 58 (2016).

  19. O. Cocle, F-H. Gauthier, G. Quilghini, P. F. Bois, and E. M. Costard, Proc. SPIE 5074, 715 (2003).

    Article  Google Scholar 

  20. K. O. Boltar, I. D. Burlakov, P. V. Vlasov, A. A. Lopukhin, V. P. Chaliy, and N. I. Katsavec, Appl. Phys., No. 6, 37 (2016).

  21. A. Rouvié, J. Coussement, O. Huet, J. P. Truffer, M. Pozzi, E. H. Oubensaid, S. Hamard, V. Chaffraix, and E. Costard, Proc. SPIE 9451, 945105 (2015).

    Article  Google Scholar 

  22. J. Coussement, A. Rouvié, E. H. Oubensaid, O. Huet, S. Hamard, J. P. Truffer, M. Pozzi, P. Maillart, Y. Reibel, E. Costard, and D. Billon-Lanfrey, Proc. SPIE 9070, 907005 (2014).

    Article  Google Scholar 

  23. G. Wicks and S. Maimon, Appl. Phys. Lett. 89, 151109 (2006).

    Article  Google Scholar 

  24. R. I. Anderson, Solid State Elec. 5, 341 (1962).

    Article  Google Scholar 

  25. Iakovleva, K. O. Boltar, M. V. Sednev, and A. V. Nikonov, Usp. Prikl. Fiz. 4, 465 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. O. Boltar or N. I. Iakovleva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boltar, K.O., Burlakov, I.D., Iakovleva, N.I. et al. Modern Photodetector IR-Modules. J. Commun. Technol. Electron. 67, 1175–1184 (2022). https://doi.org/10.1134/S1064226922090030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922090030

Keywords:

Navigation