Skip to main content
Log in

Formation of Septenary Gordon–Mills–Welch Sequences for Digital Information Transmission Systems

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

In this paper, we present septenary Gordon–Mills–Welch sequences (GMWSs) with a period of N = 2400 that are formed in finite GF[(7m)]n = GF(7S) fields. Checking polynomials hGMWS(x) are obtained in the form of a product of both primitive and irreducible polynomials hсi(x) with a degree of S = 4. The formation of GMWSs by summing sequences with polynomials hсi(x) is shown to require knowledge of the symbols of the M-sequence (MS) with polynomial hMS(x) and decimation indices determined by the exponents of the roots of polynomials hсi(x). It is determined that, compared to the binary case, septenary summable sequences can have an initial shift that is a multiple of N/(p – 1) = 400. It is shown that for each of the 160 primitive polynomials of degree S = 4 in the GF(74) field, it is possible to form seven GMWSs with equivalent linear complexity ls from 12 to 84. Compared to septenary MSs, the maximal gain in structural secrecy is 21 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Sklar, Digital Communications. Fundamentals and Applications (Prentice Hall PTR, Upper Saddle River, N. J., 2001; Vil’yams, Moscow, 2003).

  2. V. M. Vishnevskii, A. I. Lyakhov, S. L. Portnoi, and I. V. Shakhnovich, Broadband Cordless Nets of Information Transmission (Tekhnosfera, Moscow, 2005) [in Russian].

    Google Scholar 

  3. S. W. Golomb and G. Gong, Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar (Cambridge Univ. Press, Cambridge, 2005).

    Book  Google Scholar 

  4. V. P. Ipatov, Broadband Systems and Code Separation of Signals. Principles and Applications (Tekhnosfera, Moscow, 2007) [in Russian].

    Google Scholar 

  5. CDMA: Last, This, Future (MAS, Moscow, 2003) [in Russian].

  6. J. S. No, IEEE Trans. Inf. Theory 42, 260 (1996).

    Article  Google Scholar 

  7. V. P. Ipatov, Periodic Discrete Signals with Optimum Correlation Properties (Radio i Svyaz’, Moscow, 1992) [in Russian].

    Google Scholar 

  8. W. Lee, J.-Y. Kim, and J. S. No, IEICE Trans. Commun. E97-B (1), 2311 (2014).

  9. X. Shi, X. Zhu, X. Huang, and Q. Yue, IEEE Commun. Lett. 23, 1132 (2019).

    Article  Google Scholar 

  10. X. Chen and H. Zhang, J. Theoretical Appl. Inform. Technol. 52 (1), 51 (2013).

    Google Scholar 

  11. H. B. Chung and J. S. No, IEEE Trans. Inf. Theory 45, 2060 (1999).

    Article  Google Scholar 

  12. C.-M. Cho, J.-Y. Kim, and J. S. No, IEICE Trans. Commun. E98, 1268 (2015).

    Article  Google Scholar 

  13. Y. S. Kim, J. S. Chung, J. S. No, and H. Chung, IEEE Trans. Inf. Theory 54, 3768 (2008).

    Article  Google Scholar 

  14. H. Liang and Y. Tang, Finite Fields and Their Appl. 31, 137 (2015).

    Article  MathSciNet  Google Scholar 

  15. J. Y. Kim, S. T. Choi, J. S. No, and H. Chung, IEEE Trans. Inf. Theory 57, 3825 (2011).

    Article  Google Scholar 

  16. Z. Zhou, T. Helleseth, and U. Parampalli, IEEE Trans. Inf. Theory 64, 2896 (2018).

    Article  Google Scholar 

  17. D. V. Samoilenko, M. A. Eremeev, O. A. Fin’ko, and S. A. Dichenko, Trudy SPIIRAN, No. 4, 31 (2018).

    Google Scholar 

  18. G. Luo, X. Cao, M. Shi, and T. Helleseth, IEEE Trans. Inf. Theory 67 (2021).

  19. V. G. Starodubtsev, Trudy SPIIRAN 18, 912 (2019).

    Google Scholar 

  20. V. G. Starodubtsev, J. Commun. Technol. Electron. 66, 975 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Starodubtsev.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starodubtsev, V.G. Formation of Septenary Gordon–Mills–Welch Sequences for Digital Information Transmission Systems. J. Commun. Technol. Electron. 67, 979–983 (2022). https://doi.org/10.1134/S1064226922080149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922080149

Navigation