Skip to main content
Log in

Electrodynamic Simulation of a Multibeam Antenna Based on a Dual Layer Morgan Lens

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A multibeam antenna based on a dual layer Morgan lens that represents two coupled dielectric plates with variable thickness and distance between them is considered. The antenna contains a dual layer lens and a ring array of emitters in the form of Vivaldi antennas and additional elements: a matching layer and a correction ring. The ring array of emitters is closed. The problems of design and selection of parameters of elements of a multibeam antenna are considered. The electrodynamic simulation is performed in the HFSS system. It is shown that the dual layer lens exhibits substantial suppression of the effect of its shading by emitters, which makes it possible to form a system of beams with fan-shaped radiation patterns that provides spatial scanning in the sector of azimuth angles of 360°. The possibility of generation of narrow beams with a low level of side and back lobes is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.

Similar content being viewed by others

REFERENCES

  1. W. Rotman, IRE Trans. Antennas Propag. 6, 96 (1958).

    Article  Google Scholar 

  2. S. Adachi, R. Rudduck, and C. Walter, IRE Trans. Antennas Propag. 9, 353 (1961).

    Article  Google Scholar 

  3. S. E. Bankov, Integrated Microwave Optics (Fizmatlit, Moscow, 2018) [in Russian].

    Google Scholar 

  4. Y. J. Cheng, W. Hong, and Fan Ke Wu Y., IEEE Trans. Antennas Propag. 59, 40 (2011).

  5. M. Albani, M. Ettorre, S. Maci, et al., in 2006 First Eur. Conf. on Antennas and Propagation, Nice, Nov. 6–10, 2006 (IEEE, New York, 2006). https://doi.org/10.1109/eucap.2006.4585023

  6. M. Ettorre, R. Sauleau, and L. Le Coq, IEEE Trans. Antennas Propag. 59, 1093 (2011).

    Article  Google Scholar 

  7. S. E. Bankov and E. V. Frolova, J. Commun. Technol. Electron. 62, 489 (2017).

    Article  Google Scholar 

  8. X. Wan, X. Shen, Y. Luo, and T. J. Cui, Laser & Photonics Rev. 8, 757 (2014).

    Article  Google Scholar 

  9. K. Yao, X. Jiang, and H. Chen, New J. Phys. 14 (2), 023011 (2012).

  10. D.-H. Kwon and D. H. Werner, New J. Phys. 10 (11), 115023 (2008).

  11. O. Quevedo-Teruel, W. Tang, and Y. Hao, Opt. Lett. 37 (23), 4850 (2012).

    Article  Google Scholar 

  12. F. Kong, B.-I. Wu, J. A. Kong, et al., Appl. Phys. Lett. 91, 253509 (2007). https://doi.org/10.1063/1.2826283

    Article  Google Scholar 

  13. M. Rahm, S. A. Cummer, D. Schurig, et al., Phys. Rev. Lett. 100, 063903 (2008).

    Article  Google Scholar 

  14. D. R. Prado, A. V. Osipov, and O. Quevedo-Teruel, Opt. Lett. 40, 926 (2015).

    Article  Google Scholar 

  15. B. K. Tehrani, R. A. Bahr, W. Su, et al., in IEEE MTT-S Int. Microwave Symp., Honololu, June 4–9, 2017 (IEEE, New York, 2017), p. 1756. https://doi.org/10.1109/MWSYM.2017.8058985

  16. V. V. Akhtiyarov, V. A. Kaloshin, and E. A. Nikitin, J. Radioelektron., No. 1 (2014). http://jre.cplire.ru/ jre/jan14/18/text.pdf.

  17. R. E. Clapp, IEEE Trans. Antennas Propag. 32 (7), 661 (1984).

    Article  Google Scholar 

  18. S. E. Bankov, J. Radioelektron., No. 12 (2012). http://jre.cplire.ru/jre/dec12/6/text.html.

  19. S. P. Morgan, J. Appl. Phys. 29, 1358 (1958).

    Article  MathSciNet  Google Scholar 

  20. S. E. Bankov, in Proc. 7th All-Russian Microwave Conf. Moscow, Nov., 2020, p. 171. https://ieeexplore. ieee.org/document/9312300.

    Google Scholar 

  21. D. M. Sazonov, Microwave Circuits and Antennas (Vysshaya Shkola, Moscow, 1988; Mir, Moscow, 1990).

  22. H. G. Unger, Optische Nachtrichtentechnik (Elitera-Verlag, Berlin, 1976; Svyaz’, Moscow, 1979).

  23. S. E. Bankov and A. A. Kurushin, J. Radioelektron., No. 6 (2013). http://jre.cplire.ru/jre/jun13/4/text.html.

Download references

Funding

This work was supported by the State Contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Bankov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bankov, S.E., Duplenkova, M.D. Electrodynamic Simulation of a Multibeam Antenna Based on a Dual Layer Morgan Lens. J. Commun. Technol. Electron. 67, 495–504 (2022). https://doi.org/10.1134/S1064226922050035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922050035

Navigation