Skip to main content
Log in

Analysis of Conformal and Metamaterial Based Microstrip Bandpass Filter for Wi-MAX, WBAN and ISM Band Applications

  • MICROWAVE ELECTRONICS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

This article explored the design and implementation of rectangular split ring resonator (SRR) based microstrip bandpass filter for mobile Wi-MAX, WBAN and ISM band applications. A novel rectangular SRR based unit cell analysis with respect to permittivity, permeability, refractive index, and absorption rate are carried out using the Ansys HFSS. Flexible polyimide is used as substrate and the designed CSRR is placed in the implementation of the bandpass filter models. Initial design is of microstrip line-based radiating element with CSRR ground to operate at 3.2, 4.8, and 5.8 GHz. The second model is of SRR structure based radiating element bandpass filter to operate at 2.1, 3.9, and 5.7 GHz, respectively. The conformality of both bandpass filters across 15°, 30°, 45°, 60° and 90° bending are analyzed and found negligible variation in the performance characteristics. Prototyped microstrip bandpass filter results are measured using ANRITSU-MS2037C combinational analyser and found suitable validation with simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. 1. V. G. Veselago, “The electrodynamics of substrate with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509–514 (1968).

    Article  Google Scholar 

  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075– 2084 (1999).

    Article  Google Scholar 

  3. D. R. Smith, D. C. Vier, W. Padilla, S. C. N. Nasser, and S. Schultz, “Loop-wire for investigating plasmons at microwave frequencies,” Phys. Lett. 75, 1425–1427, (1999).

    Google Scholar 

  4. D. R. Smith, W. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  Google Scholar 

  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).

    Article  Google Scholar 

  6. R. Marqués, J. D. Baena, J. Martel, F. Medina, F. Falcone, M. Sorolla, and F. Martin, “Novel small resonant electromagnetic particles for metamaterial and filter design,” in Int. Electromagn. Adv. Applicat. Conf., Turin, Italy, 8 (12), 439–442, (2003).

  7. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-linelens,” Phys. Rev. Lett. 92, 117403 (2004).

    Article  Google Scholar 

  8. S. Lim, C. Caloz, and T. Itoh, “A reflecto-directive system using a composite right/left-handed (CRLH) leaky-wave antenna and heterodyne mixing,” IEEE Microwave Wireless Compon. Lett. 14 (4), 183–185 (2004).

    Article  Google Scholar 

  9. C. Caloz, A. Sanada, and T. Itoh, “A novel composite right/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,” IEEE Trans. Microwave Theory Tech. 52, 980–992 (2004).

    Article  Google Scholar 

  10. Y. Horii, C. Caloz, and T. Itoh, “Super-compact multilayered left-handed transmission line and diplexer application,” IEEE Trans. Microwave Theory Tech. 53, 1527–1534 (2005).

    Article  Google Scholar 

  11. I. Lin, M. De Vincentis, C. Caloz, and T. Itoh, “Arbitrary dual-band components using composite right/left-handed transmission lines,” IEEE Trans. Microwave Theory Tech. 52, 1142–1149 (2004).

    Article  Google Scholar 

  12. A. Lai, C. Caloz, and T. Itoh, “Composite right/lefthanded transmission line metamaterials,” IEEE Microwave Mag. 9, 34–50 (2004).

    Article  Google Scholar 

  13. C. Caloz and T. Itoh, “A novel mixed conventional microstrip and composite right/left-handed backward- wave directional coupler with broadband and tight coupling characteristics,” IEEE Microwave Wireless Compon. Lett. 14 (1), 31–33 (2004).

    Article  Google Scholar 

  14. N. Engheta, “An idea for thin sub-wavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Antennas Wireless Propag. Lett. 1 (1), 10–13 (2002).

    Article  Google Scholar 

  15. T. Decoopman, O. Vanbesien, and D. Lippens, “Demonstration of a backward wave in a single split ring resonator and wire loaded tinline,” IEEE Microwave Wireless Compon. Lett. 14 (11), 507–509 (2004).

    Article  Google Scholar 

  16. A. Grbic and G. V. Eleftheriades, “Periodic analysis of a 2-D negative refractive index transmission line structure,” IEEE Trans. Antennas Propag. 51, 2604–2611 (2003).

    Article  Google Scholar 

  17. R. W. Ziolkowski and N. Engheta, “Metamaterial special issue introduction,” IEEE Trans. Antennas Propag. 51, 2546–2549 (2003).

    Article  Google Scholar 

  18. S. A. Cummer, “Simulated causal subwavelength focusing by a negative refractive index slab,” Appl. Phys. Lett. 82, 1503 (2003).

    Article  Google Scholar 

  19. J. Bonache, F. Martin, F. Falcone, J. Garcia, I. Gil, T. Lopetegi, M. A. G. Laso, R. Marques, F. Medina, and M. Sorolla, “Super compact split ring resonators CPW bandpass filters,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 6–11, 2004, (IEEE, New York, 2004), vol. 3, pp. 1483–1486.

  20. J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, “Complementary split ring resonators for microstrip diplexer design,” Electron. Lett. 41, 810–811 (2005).

    Article  Google Scholar 

  21. Rezaei, Abbas, Salah I. Yahya, and Mohd H. Jamaluddin. “A novel microstrip diplexer with compact size and high isolation for GSM applications,” AEU-Int. J. Electron. Commun. 114, 153018 (2020).

    Article  Google Scholar 

  22. Q. Liu, D. F. Zhou, D. W. Zhang, D. L. Lu, and Y. Zhang, “Dual-mode microstrip patch bandpass filters with generalized frequency responses,” IEEE Access 7, 163537–163546 (2019).

    Article  Google Scholar 

  23. M. Challal, A. Mermoul, and K. Hocine, “High-frequency microstrip dual-band bandpass filter fabricated using FR-4 glass epoxy material,” J. Phys. D: Appl. Phys. 50, 495602 (2017).

    Article  Google Scholar 

  24. S. Moitra and R. Dey, “Design of dual band and tri-band bandpass filter (BPF) with improved inter-band isolation using DGS integrated coupled microstrip lines structures,” Wireless Personal Commun. 110, 2019–2030 (2020).

    Article  Google Scholar 

  25. Mouloud Challal, Kenza Hocine, and Ali Mermoul. “A novel design of compact dual-band bandpass filter for wireless communication systems,” Wireless Personal Commun. 109, 1713–1726 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors express their gratitude towards Department of Science and Technology for the technical support through SR/FST/ET-II/2019/450.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. P. Madhav.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vineetha, K.V., Madhav, B.T., Kumar, M.S. et al. Analysis of Conformal and Metamaterial Based Microstrip Bandpass Filter for Wi-MAX, WBAN and ISM Band Applications. J. Commun. Technol. Electron. 67, 443–455 (2022). https://doi.org/10.1134/S1064226922040118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922040118

Keywords:

Navigation