Skip to main content
Log in

High Performance Image Super-Resolution Using Convolutional Neural Networks and Nonsubsampled Contourlet Transform

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Disadvantages of deep convolutional neural networks (CNNs) in image super-resolution (SR) are slow convergence rate, long training time, slow run time, complexity and high computational cost. On the other hand, shallow CNNs, while have lack of above-mentioned disadvantages for deep CNNs, do not have ability of learning the high frequency components appropriately. The purpose of this paper is promoting shallow networks so as to increase learning ability for fine details of the image while keeping the previous advantages. We present a learning-based approach which is composition of a feature extraction transformation unit with a training and approximation unit (shallow CNNs). In the transformation unit, to extract fine details of the image, nonsubsampled contourlet transform (NSCT) is used. Transforming the feature space to frequency domain causes that the output coefficients to have enough sparse so that by increasing the sparse coefficients, training of neural network will be easier and the training time will decrease considerably. Advantages of the proposed approach with respect to other approaches are high reconstruction accuracy, high training speed, low runtime, lower network complexity and faster convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. H. Chang, D. Y. Yeung, and Y. Xiong, in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit. (CVPR), Washington, DC, USA, June 27–July 2, 2004 (IEEE, New York, 2004), pp. 1–8.

  2. J. Yang, J. Wright, T. S. Huang, and Y. Ma, IEEE Trans. Image Process. 19, 2861 (2010).

    Article  MathSciNet  Google Scholar 

  3. R. Zeyde, M. Elad, and M. Protter, in Proc. Int. Conf. on Curves and Surfaces, Avignon France, June 24–30, 2010, pp. 711–730.

  4. K. I. Kim and Y. Kwon, IEEE Trans. Pattern Anal. Mach. Intell. 32, 1127 (2010).

    Article  Google Scholar 

  5. T. Peleg and M. Elad, IEEE Trans. Image Process. 23, 2569 (2014).

    Article  MathSciNet  Google Scholar 

  6. J. Ahmed and M. A. Shah, EURASIP J. Image and Video Process. 36, 1 (2016).

    Google Scholar 

  7. S. Huang, J. Sun, Y. Yang, Y. Fang, P. Lin, and Y. Que, IEEE Trans. Image Process. 27, 2650 (2018).

    Article  MathSciNet  Google Scholar 

  8. W. T. Freeman, T. R. Jones, and E. C. Pasztor, IEEE Comput. Graph. Appl. 22, 56 (2002).

    Article  Google Scholar 

  9. Y. Zhang, Y. Zhang, J. Zhang, and Q. Dai, IEEE Trans. Multimedia 18, 405 (2016).

    Article  Google Scholar 

  10. R. Timofte, V. De, and L.V. Gool, in Proc. IEEE Int. Conf. Comput. Vision, Australia, 2013, pp. 1920–1927.

  11. R. Timofte, V. De, and L.V. Gool, in Proc. Asian Conf. on Comput. Vision ACCV 2014, Singapore , Nov. 1–5, 2014 (ACCV, 2014), pp. 111–126.

  12. S. Schulter, C. Leistner, and H. Bischof, in Proc. IEEE Conf. Comput. Vision Pattern Recognit. (CVPR), Boston, Mass, USA, June 7–12, 2015, pp. 3791–3799.

  13. E. Pérez-Pellitero, J. Salvador, J. Ruiz-Hidalgo, and B. Rosenhahn, in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR 2016), Las Vegas, NV, USA, June 2730, 2016 (IEEE, New York, 2016), pp. 1837–1845.

  14. Ch. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, in Proc. IEEE Conf. Comput. Vision Pattern Recognit., (CVPR 2017), Honolulu, HI, USA, July 21–26, 2017, pp. 4681–4690.

  15. C. Dong, C. C. Loy, K. He, and X. Tang, in Proc. Eur. Conf. on Computer Vision, Zurich, Switzerland, Sept. 2014, pp. 184–199.

  16. C. Dong, C. C. Loy, K. He, and X. Tang, IEEE Trans. Pattern Anal. Mach. Intell. 38, 295 (2016).

    Article  Google Scholar 

  17. C. Dong, C. C. Loy, and X. Tang, in Proc. Eur. Conf. on Computer Vision, Amsterdam, The Netherlands, 2016, pp. 391–407.

  18. D. Liu, Z. Wang, B. Wen, J. Yang, W. Han, and T. S. Huang, IEEE Trans. Image Process. 25, 3194 (2016).

    Article  MathSciNet  Google Scholar 

  19. N. Kumar, R. Verma, and A. Sethi, Pattern Recognit. Lett. 90, 65 (2017).

    Article  Google Scholar 

  20. N. Kumar and A. Sethi, IEEE Trans. Multimedia 20, 298 (2018).

    Article  Google Scholar 

  21. T. Wang, W. Sun, H. Qi, and P. Ren, IEEE Geosci. Remote. Sens. Lett. 15, 769 (2018).

    Article  Google Scholar 

  22. M. Kawulok, P. Benecki, S. Piechaczek, K. Hrynczenko, D. Kostrzewa, and J. Nalepa, IEEE Geosci. Remote. Sens. Lett. 17, 1062 (2020).

    Article  Google Scholar 

  23. S. Mei, R. Jiang, X. Li, and Q. Du, IEEE Trans. Geosci. Remote Sens. 58, 4590 (2020).

    Article  Google Scholar 

  24. M. Imani, Neurocomputing 398, 117 (2020).

    Article  Google Scholar 

  25. J. Kim, J. K. Lee, and K. M. Lee, in Proc. IEEE Conf. Comput. Vision Pattern Recognit. (CVPR), USA, 2016, (IEEE, New York, 2016), pp. 1646–1654.

  26. T. Guo, H. S. Mousavi, T. H. Vu, and V. Monga, in Proc. IEEE Conf. Comput. Vision Pattern Recognit. (CVPR) Workshops, USA, 2017 (IEEE, New York, 2017), pp. 104–113.

  27. A. Esmaeilzehi, M. O. Ahmad, and M. N. S. Swamy, IEEE Access 6, 59963 (2018).

    Article  Google Scholar 

  28. P. Liu, Y. Hong, and Y. Liu, IEEE Access 7, 37555 (2019).

    Article  Google Scholar 

  29. A. L. D. Cunha, J. Zhou, and M. N. Do, IEEE Trans. Image Process. 15, 3089 (2006).

    Article  Google Scholar 

  30. H. Zhang, P. Wang, C. Zhang, and Z. Jiang, Sensors 19, 3234 (2019).

    Article  Google Scholar 

  31. P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, IEEE Trans. Pattern Anal. Mach. Intell. 33, 898 (2011).

    Article  Google Scholar 

  32. M. Bevilacqua, A. Roumy, C. Guillemot, and M. A. Morel, in Proc. British Mach. Vision Conf. (BMVC 2012), Surrey, Sept. 3–7, 2012 (BMVC 2012), pp. 1–10.

  33. R. Zeyde, M. Elad, and M. Protter, in Proc. 7th Int. Conf. Curves Surfaces, 2012, pp. 711–730.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Farajzadeh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farajzadeh, A., Mohamadi, S. & Imani, M. High Performance Image Super-Resolution Using Convolutional Neural Networks and Nonsubsampled Contourlet Transform. J. Commun. Technol. Electron. 67, 418–429 (2022). https://doi.org/10.1134/S1064226922040040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922040040

Keywords:

Navigation