Skip to main content
Log in

Development of the Method for Reconstructing the Effective Frequency of Electron Collisions in the Ionospheric Plasma

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A method for reconstructing the effective frequency of electron collisions is developed on the basis of data on the attenuation and delay of frequency-modulated radio signals during the vertical sounding of the Earth ionosphere. Numerical modeling is realized in the cases of both the single-layer and double-layer models using the method of the extended bicharacteristic system. The ray trajectories of frequency-modulated decametric signals are drawn in the time—altitude coordinates. The signal absorption depending on the frequency, signal amplitude characteristics, and the frequency dependences of the maximal reflection altitude and arrival time are investigated. The dependences of the vertical component of the wave vector on the altitude and time are studied. The developed technique of experimental data processing makes it possible to obtain the dependence of the effective collision frequency on the altitude with the good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

REFERENCES

  1. V. E. Kunitsyn, E. D. Tereshchenko, and E. S. Andreeva, Ionosphere Radio Tomography (Fizmatlit, Moscow, 2007).

    Google Scholar 

  2. D. V. Ivanov, Methods and Mathematical Models of the Research of Distribution in the Ionosphere of Aggregate Decameter Signals and Correction of Their Dispersion Distortions (Mariiskii Gos. Tekh. Univ., Ioshkar-Ola, 2006).

    Google Scholar 

  3. V. I. Kurkin, I. I. Orlov, and V. N. Popov, Method of Normal Waves in a Problem of a Short-Wave Radio Communication (Nauka, Moscow, 1981).

    Google Scholar 

  4. E. S. Andreeva, V. L. Frolov, V. E. Kunitsyn, et al., Radio Sci. 51, 638 (2016).

    Article  Google Scholar 

  5. A. S. Kryukovskii, V. I. Kurkin, O. A. Laryunin, D. S. Lukin, A. V. Podlesnyi, D. V. Rastyagaev, and Ya. M. Chernyak, J. Commun. Technol. Electron. 61, 920 (2016).

    Article  Google Scholar 

  6. M. Cedrik, A. Podlesnyi, and V. Kurkin, in Proc. 2020 7th All-Russian Microwave Conf. (RMC), Moscow, Nov. 25–27, 2020 (IEEE, New York, 2020), p. 260. https://doi.org/10.1109/RMC50626.2020.9312341

  7. A. Podlesnyi, V. Kurkin, and M. Cedrik, in Proc. 2020 7th All-Russian Microwave Conf. (RMC), Moscow, Nov. 25–27, 2020 (IEEE, New York, 2020), p. 263. https://doi.org/10.1109/RMC50626.2020.9312232

  8. M. I. Ryabova, D. V. Ivanov, A. A. Chernov, and V. V. Ovchinnikov, in 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO-2020) (Proc. IEEE, Svetlogorsk, July 1–3, 2020) (IEEE, New York, 2020).

  9. K. Davies, Ionospheric Radio Waves (Blaisdell, London, 1969; Mir, Moscow, 1973).

  10. A. N. Kazantsev, D. S. Lukin, and Yu. G. Spiridonov, Kosmich. Issled. 5, 593 (1967).

    Google Scholar 

  11. A. S. Kryukovskii, D. S. Lukin, D. V. Rastyagaev, and Yu. I. Skvortsova, J. Commun. Technol. Electron. 60, 1049 (2015).

    Article  Google Scholar 

  12. A. S. Kryukovskii, D. S. Lukin, and K. S. Kirsanova, J. Commun. Technol. Electron. 57, 1039 (2012).

    Article  Google Scholar 

  13. A. S. Kryukovsky, D. S. Lukin, E. V. Mikhaleva, et al., in Proc. 2020 7th All-Russian Microwave Conf. (RMC), Moscow, Nov. 25–27, 2020 (IEEE, New York, 2020), p. 211. https://doi.org/10.1109/RMC50626.2020.9312352

  14. A. S. Kryukovsky, D. S. Lukin, E. V. Mikhaleva, and D. V. Rastyagaev, in Modern Problems of Remote Sensing, Radar-Location, Distribution and Diffraction of Waves (Proc. Open Sci. Conf., Murom, May 25–27, 2021), p. 57.

  15. Yu. I. Bova, A. S. Kryukovsky, and D. S. Lukin, J. Commun. Technol. Electron. 64, 1 (2019).

    Article  Google Scholar 

  16. A. S. Kryukovskii, D. S. Lukin, and Yu. I. Bova, J. Commun. Technol. Electron. 65, 1364 (2020). https://doi.org/10.31857/S0033849420120128

    Article  Google Scholar 

  17. A. S. Kryukovsky, D. V. Rastyagaev, and Yu. I. Skvortsova, Vestn. Ros. Nov. Univ. Ser.: Uprav., Vychislit. Tekh. i Inform., No. 4, 47 (2013).

  18. E. B. Ipatov, A. S. Kryukovskii, D. S. Lukin, E. A. Palkin, and D. V. Rastyagaev, J. Commun. Technol. Electron. 59, 1341 (2014).

    Article  Google Scholar 

  19. A. S. Kryukovskii, D. V. Rastyagaev, and D. S. Lukin, Russ. J. Math. Phys. 16, 251 (2009).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-12-00299.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kryukovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Efimova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryukovskii, A.S., Lukin, D.S., Mikhaleva, E.V. et al. Development of the Method for Reconstructing the Effective Frequency of Electron Collisions in the Ionospheric Plasma. J. Commun. Technol. Electron. 67, 117–129 (2022). https://doi.org/10.1134/S1064226922020085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922020085

Navigation