Skip to main content
Log in

Synthesis of Bifocal Mirror–Lens Cylindrical System with Minimum Aberrations

  • ANTENNA AND FEEDER SYSTEMS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A method for the synthesis and optimization of bifocal mirror–lens cylindrical systems is developed using sequential finding of fragments of the first surface of the dielectric lens and mirror adjacent to second surface of the lens. The starting fragment of the first surface of the lens is represented as a quadratic polynomial the parameters of which are found from the solution to an original equation that generally provides continuity of the second derivatives of functions describing the surfaces of the lens and mirror. The starting fragment of the mirror is found from the solution to the problem of synthesis of a plane front for the central position of the source. Optimization parameters are determined to minimize the rms aberration at fixed thickness and refractive index of the lens and the angle of view of the bifocal system. The boundaries of the domain of existence are found for the solution to the synthesis problem on the plane of the parameters for angles of view of 50, 70, and 105 degrees, and the dependences of the rms aberration on the optimization parameters and a set of parameters providing the minimum aberration are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. A. Kaloshin, in Proc. 13th Int. Crimean Conf.: Microwave Devices and Telecommunication Technologies (CriMiCo’03), Sevastopol’, Sept. 8–12, 2003 (Weber, Sevastopol, 2003), p. 383.

  2. M. Ettorre, E. Gandini, and R. Sauleau, in Proc. 5th Eur. Conf. on Antennas and Propagation (EUCAP), Rome, Apr. 11–15, 2011 (IEEE, New York, 2011), p. 2947.

  3. K. Tekkouk, M. Ettorre, L. Le Coq, and R. Sauleau, IEEE Trans. Antennas Propag. 64, 504 (2016).

    Article  Google Scholar 

  4. V. A. Kaloshin, Le Doan Trinh, and E. V. Frolova, J. Commun. Technol. Electron. 64, 756 (2019).

    Article  Google Scholar 

  5. V. A. Kaloshin, D. T. Le, and U. N. Vi, Zh. Radioelektron. No. 3 (2020). http://jre.cplire.ru/jre/ mar20/13/text.pdf.

  6. V. A. Kaloshin and D. T. Le, Zh. Radioelektron. No. 4 (2020). http://jre.cplire.ru/jre/apr20/4/text.pdf.

  7. V. A. Kaloshin and K. T. Nguen, Zh. Radioelektron., No. 7 (2020). http://jre.cplire.ru/jre/jul20/9/text.pdf.

  8. V. A. Kaloshin, Kh. D. Ngiem, and E. V. Frolova, Zh. Radioelektron., No. 1 (2018). http://jre.cplire.ru/ jre/jan18/3/text.pdf.

  9. S. E. Bankov and E. V. Frolova, J. Commun. Technol. Electron. 62, 469 (2017).

    Google Scholar 

  10. V. A. Kaloshin and E. V. Frolova, Zh. Radioelektron., No. 12 (2015). http://jre.cplire.ru/jre/dec15/19/ text.pdf.

  11. V. A. Kaloshin and Vi Ut Nam, J. Commun. Technol. Electron. 67 (2) (2022), in press.

Download references

Funding

The work was supported by the State Contract no. 0030-2019-006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kaloshin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaloshin, V.A., Vi Ut Nam Synthesis of Bifocal Mirror–Lens Cylindrical System with Minimum Aberrations. J. Commun. Technol. Electron. 67, 240–248 (2022). https://doi.org/10.1134/S1064226922020061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922020061

Navigation