Skip to main content
Log in

Integrated Adaptive Impedance Matching Using Phase Shifters

  • THEORY OF RADIO CIRCUITS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

This paper proposes an integrated adaptive impedance matching system using phase shifters to transform dynamically varying complex load impedances for conjugate matching. The system comprises mismatch detector, control circuit, and variable elements. Variable phase shifter is much easier to make compared to variable inductor and capacitor. It has low parasitics, high Q-factor, highly linear, and can be made to have wide tuning range. It is more superior than variable inductor/capacitor at ultra-high microwave frequencies. The equations and design methodologies for the adaptive impedance matching system are presented, including a few methods to automatically control the phase shifters. The impedance matching domains are also analyzed. A few simulation examples are presented. The simulation results confirm the effectiveness of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. T. Rathod, “A review of electric impedance matching techniques for piezoelectric sensors,” Actuators and Transducers. Electronics 8 (2), 169 (2019). https://doi.org/10.3390/electronics8020169

    Article  Google Scholar 

  2. Li Huanan, Mekawy Ahmed, and Alu Andrea, “Beyond Chu’s limit with floquet impedance matching,” Phys. Rev. Lett. 123 (16), 164102 (2019). https://doi.org/10.1103/PhysRevLett.123.164102

    Article  Google Scholar 

  3. M. Alibakhshikenari, B. S. Virdee, P. Shukla, et al., “Improved adaptive impedance matching for RF front-end systems of wireless transceivers,” Sci. Rep. 10, 14065 (2020). https://doi.org/10.1038/s41598-020-71056-0

    Article  Google Scholar 

  4. Shlivinski Amir and Hadad Yakir, “Beyond the bode-fano bound: wideband impedance matching for short pulses using temporal switching of transmission-line parameters,” Phys. Rev. Lett. 121 (20), 204301 (2018). https://doi.org/10.1103/PhysRevLett.121.204301

    Article  Google Scholar 

  5. S. Fan et al., “A 2.45-GHz rectifier-booster regulator with impedance matching converters for Wireless energy harvesting, IEEE Trans. Microwave Theory Techniques 67 (9), 3833–3843 (2019). https://doi.org/10.1109/TMTT.2019.2910062

    Article  Google Scholar 

  6. Qingping Wang, Sha Li, Jin An Sam Oh, Tian Wu, “Electrical impedance matching based on piezoelectric ceramics for energy harvesting application,” Mater. Technol. 35 (9–10), 650–655 (2020). https://doi.org/10.1080/10667857.2020.1746526

    Article  Google Scholar 

  7. P. Wu et al., “High-efficient rectifier with extended input power range based on self-tuning impedance matching,” IEEE Microwave Wireless Components Lett. 28 (12), 1116–1118 (2018). https://doi.org/10.1109/LMWC.2018.2876773

    Article  Google Scholar 

  8. T. Shih and N. Behdad, “Wideband, non-foster impedance matching of electrically small transmitting antennas,” IEEE Trans. Antennas Propag. 66 (11), 5687–5697 (2018). https://doi.org/10.1109/TAP.2018.2863123

    Article  Google Scholar 

  9. B. K. Chung, “Variability analysis of impedance matching network,” Microelectron. J. 37 (11), 1419–1423 (2006). https://doi.org/10.1016/j.mejo.2006.06.001

    Article  Google Scholar 

  10. B. K. Chung, “Q-based design method for T network impedance matching,” Microelectron. J. 37 (9), 1007–1011 (2006). https://doi.org/10.1016/j.mejo.2006.01.019

    Article  Google Scholar 

  11. R. N. Simons and R. Q. Lee, “Impedance matching of tapered slot antenna using a dielectric transformer,” Electron. Lett. 34, 2287–2289 (1998).

    Article  Google Scholar 

  12. W. C. E. Neo, Y. Lin, X. D. Liu, L. C. N. de Vreede, L. E. Larson, M. Spirito, M. J. Pelk, K. Buisman, A. Akhnoukh, A. de Graauw, and L. K. Nanver, “Adaptive multi-band multi-mode power amplifier using integrated varactor-based tunable matching networks,” IEEE J. Solid- State Circuits 41 (9), 2166–2176 (2006). https://doi.org/10.1109/JSSC.2006.880586

    Article  Google Scholar 

  13. H. T. Zhang, H. Gao, and G. P. Li, “Broad-band power amplifier with a novel tunable output matching network,” IEEE Trans. Microwave Theory Tech. 53 (11), 3606–3614 (2005). https://doi.org/10.1109/TMTT.2005.858374

    Article  Google Scholar 

  14. C. E. McIntosh, R. D. Pollard, and R. E. Miles, “Novel MMIC source impedance tuners for on-wafer microwave noise-parameter measurements,” IEEE Trans. Microwave Theory Tech. 47 (2), 125–131 (1999). https://doi.org/10.1109/22.744286

    Article  Google Scholar 

  15. D. Lauder and Y. Sun, “Design considerations of antennas and adaptive Impedance matching networks for RF energy harvesting,” 2020 European Conference on Circuit Theory and Design (ECCTD), 2020, pp. 1–4, https://doi.org/10.1109/ECCTD49232.2020.9218310

  16. H. Jang, W. Lee, T. Yeo, and J. Yu, “Adaptive load impedance matching using 5-port reflectometer with computationally simple measurement,” 2013 Asia-Pacific Microwave Conference Proceedings (APMC), 2013, pp. 857–859. https://doi.org/10.1109/APMC.2013.6694957

  17. Y. Li, W. Dong, Q. Yang, J. Zhao, L. Liu, and S. Feng, “An automatic impedance matching method based on the feedforward-backpropagation neural network for a WPT system,” IEEE Trans. Ind. Electron. 66 (5), 3963–3972 (2019). https://doi.org/10.1109/TIE.2018.2835410

    Article  Google Scholar 

  18. Y. Li and D. Cheng, “Adaptive impedance matching system,” 2010 International Forum on Information Technology and Applications, 2010, pp. 7–9. https://doi.org/10.1109/IFITA.2010.126

  19. A. van Bezooijen, M. A. de Jongh, F. van Straten, R. Mahmoudi, and A. H. M. van Roermund, “Adaptive impedance-matching techniques for controlling L networks,” IEEE Trans. Circuits Syst. I: Regular Pap. 57 (2), 495–505 (2010). https://doi.org/10.1109/TCSI.2009.2023764

    Article  MathSciNet  Google Scholar 

  20. Fanfan Meng, van Bezooijen A., and Mahmoudi R., “A mismatch detector for adaptive antenna impedance matching, 36th European Microwave Conference, 2006, pp. 1457–1460. https://doi.org/10.1109/EUMC.2006.281332

  21. M. Thompson and J. F. Fidler, “Application of the genetic algorithm and simulated annealing to LC filter tuning,” Proc. Inst. Elect. Eng. Circuits Devices Syst. 148 (4), 177–182 (2001). https://doi.org/10.1049/ip-cds:20010454

    Article  Google Scholar 

  22. Q. Gu, J. R. De Luis, A. S. Morris III, and J. Hilbert, An analytical algorithm for Pi-network impedance tuners, IEEE Trans. Circuits Syst. I: Regular Pap. 58 (12), 2894–2905 (2011). https://doi.org/10.1109/TCSI.2011.2158700

    Article  MathSciNet  MATH  Google Scholar 

  23. Q. Gu and A. S. Morris, “A new method for matching network adaptive control,” IEEE Trans. Microwave Theory Tech. 61 (1), 587–595 (2013). https://doi.org/10.1109/TMTT.2012.2230022

    Article  Google Scholar 

  24. P. Sjoblom and H. Sjöland, “An adaptive impedance tuning CMOS circuit for ISM 2.4-GHz band,” IEEE Trans. Circuits Syst. I: Regular Pap. 52 (6), 1115–1124 (2005). https://doi.org/10.1109/TCSI.2005.849116

    Article  Google Scholar 

  25. A. Robichaud, A. H. Alameh, F. Nabki, and D. Deslandes, “An agile matching network using phase detection for antenna tuning,” IEEE 20th International Conference on Circuits, and Systems (ICECS), 2013, pp. 755–758. https://doi.org/10.1109/ICECS.2013.6815524

  26. M. M. Teymoori, M. Dousti, and S. Afrang, “A low-loss compact six-bit DMTL phase shifter for phased array antenna applications,” Int. J. Circuit Theor. Appl. 48, 2111–2129 (2020). https://doi.org/10.1002/cta.2871

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Boon Kuan.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung Boon Kuan Integrated Adaptive Impedance Matching Using Phase Shifters. J. Commun. Technol. Electron. 66 (Suppl 2), S185–S193 (2021). https://doi.org/10.1134/S1064226921140084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921140084

Keywords:

Navigation