Skip to main content
Log in

CFAR Detection Performance in Weibull Clutter for Statistical MIMO Radar Using Fuzzy Fusion Rules

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Fuzzy fusion is a technique, which, by using fuzzy rules at the data fusion center, improves the detection performance. In this paper, we analyze the FCA-CFAR, FGO-CFAR and FSO-CFAR detectors in homogeneous and Non-Homogeneous Weibull background for statistical MIMO radars. The non-homogeneity is modeled by the presence of a clutter edge in the reference window. For each detector, we derive the membership function and compute the threshold at the data fusion center. We apply the “Maximum”, “Minimum”, “Algebraic Sum” and “Algebraic Product” fuzzy rules for MN nodes at the fusion center. The obtained results showed that the best performance is obtained by the ‘Algebraic Product’ fuzzy rule. In the clutter edge case, the FSO-CFAR has the best false alarm rate control when the test cell is in the low level clutter, while when the test cell is in the high level clutter the FGO-CFAR performs better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. L. I. Ponomarev and A. I. Skorodumov, J. Commun. Technol. Electron. 54, 76 (2009).

    Article  Google Scholar 

  2. C. Arunachalaperumal, C. Arun, S. Dhilipkumar, and G. Abija, J. Commun. Technol. Electron. 59, 1247 (2014).

    Article  Google Scholar 

  3. H. M. Finn and R. S. Johnson, RCA Rev. 29, 414 (1968).

  4. V. G. Hansen, in Proceedings of the IEE International Radar Conference, 1973, p. 325.

  5. M. Baadeche, F. Soltani, and F. Gini, Signal Image Video Process. 13, 1677 (2019).

    Article  Google Scholar 

  6. H. Rohling, IEEE Trans. Aerosp. Electron. Syst. 19, 608 (1983).

    Article  Google Scholar 

  7. M. Baadeche and F. Soltani, Digital Signal Process. 44, 47 (2015).

    Article  Google Scholar 

  8. J. A. Ritcey, IEEE Trans. Aerosp. Electron. Syst. 22, 443 (1986).

    Article  Google Scholar 

  9. I. Ozgunes, P. P. Gandhi, and S. A. Kassam, IEEE Trans. Aerosp. Electron. Syst. 28, 1002 (1992).

    Article  Google Scholar 

  10. M. Barkat and P. K. Varshney, IEEE Trans. Aerosp. Electron. Syst. 25, 141 (1989).

    Article  Google Scholar 

  11. A. R. Elias-Fusté, A. Broquetas-ibars, J. P, Antequera, and J. C. M. Yuste, IEEE Trans. Aerosp. Electron. Syst. 28, 276 (1992).

    Article  Google Scholar 

  12. M. K. Uner and P. K. Varshney, IEEE Trans. Aerosp. Electron. Syst. 32, 84 (1996).

    Article  Google Scholar 

  13. Z. Hammoudi and F. Soltani, Signal Process. 84, 1231 (2004).

    Article  Google Scholar 

  14. N. Janatian, M. Modarres-Hashemi, and A. Sheikhi, Circuits Syst. Signal Process. 32, 1389 (2013).

    Article  Google Scholar 

  15. S. W. Leung, W. Minett, Y. M. Siu, and M. K. Lee, IEEE Trans. Aerosp. Electron. Syst. 38, 346 (2002).

    Article  Google Scholar 

  16. Z. Hammoudi and F. Soltani, IEEE Proc. F, 151, 135 (2004).

  17. H. A. Meziani and F. Soltani, Signal Process. 91, 2530 (2011).

    Article  Google Scholar 

  18. F. Khaldi, F. Soltani, and M. Baadeche, J. Commun. Technol. Electron. 66, 62 (2021).

    Article  Google Scholar 

  19. Y. Dong, Distribution of X-Band High Resolution and High Grazing Angle Sea Clutter, Defense Science and Technology Organisation (Edinburgh, South Australia, 2006).

  20. A. Papoulis and A. B. Smith, Probability Random Variables and Stochastic Processes (McGraw-Hill, New York, 2002).

    Google Scholar 

  21. R. Ravid and N. Levanon, IEEE Proc. 139, 256 (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Baadeche.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maamar Abimouloud, Baadeche, M. & Soltani, F. CFAR Detection Performance in Weibull Clutter for Statistical MIMO Radar Using Fuzzy Fusion Rules. J. Commun. Technol. Electron. 66 (Suppl 2), S118–S125 (2021). https://doi.org/10.1134/S1064226921140011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921140011

Keywords:

Navigation