F. N. Abu-Khzam, A. E. Mouawad, and M. Liedloff, “An exact algorithm for connected red-blue dominating set,” J. Discr. Alg. 9, 252–262 (2011).
MathSciNet
MATH
Google Scholar
C. Adjih, P. Jacquet, and L. Viennot, “Computing connected dominating sets with multipoint relays,” Ad Hoc & Sensor Wir. Netw. (Mar.), 27–39 (2005).
J. A. Torkestani and M. R. Meybodi, “Clustering the wireless Ad Hoc networks: distributed learning automata approach,” J. Parallel Distr. Comput. 70, 394–405 (2010).
MATH
Google Scholar
J. A. Torkestani and M. R. Meybodi, “Weighted Steiner connected dominating set and its application to multicast routing in wireless MANETs,” Wir. Pers. Commun. 60 (2), 145–169 (2011).
Google Scholar
J. A. Torkestani, “An adaptive backbone formation algorithm for wireless sensor networks,” Comp. Commun. 35, 1333–1344 (2012).
Google Scholar
J. A. Torkestani, “Algorithms for Steiner connected dominating set problem based on learning automata theory,” Int. J. Foundat. Comp. Sci. 26 (6), 769–801 (2015).
MathSciNet
MATH
Google Scholar
R. B. Allan, R. Laskar, and S. T. Hedetniemi, “A note on total domination,” Discr. Math. 49 (1), 7–13 (1984).
MathSciNet
MATH
Google Scholar
J. Alber, H. Fan, M. R. Fellows, R. Niedereier, F. A. Rosamond, and U. Stege, “A refined search tree technique for dominating set on planar graphs,” J. Comput. Syst. Sci. 71 (4), 385–405 (2005).
MathSciNet
MATH
Google Scholar
M. Albuquerque and T. Vidal, http://arxiv.org/ abs/1808.09809 [cs.AI].
N. Alon, F. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh, “Spanning directed trees with many leaves,” SIAM J. Discr. Math. 23 (1), 466–476 (2009).
MathSciNet
MATH
Google Scholar
N. Alon and S. Gutner, “Linear time algorithms for finding a dominating set of fixed size in degenerated graphs,” Algorithmica 54, 544–556 (2009).
MathSciNet
MATH
Google Scholar
J. D. Alvarado, S. Dantas, E. Mohr, and D. Rautenbach, “On the maximum number of minimum dominating sets in forests,” Discr. Math. 342, 934–942 (2019).
MathSciNet
MATH
Google Scholar
K. M. Alzoubi, P.-J. Wan, and O. Frieder, “Maximal independent set, weakly connected dominating set, and induced spanners for mobile ad-hoc networks,” Int. J. Foundat. Comp. Sci. 14, 287–303 (2003).
MATH
Google Scholar
C. Ambuhl, T. Erlebach, M. Mihalak, and M. Nunkesser, “Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graph,” in APPROX-RANDOM 2006, LNCS 4110 (Springer, 2006), pp. 3–14.
Google Scholar
D. V. Andrade, M. G. C. Resende, and R. F. Werneck, “Fast local search for the maximum independent set problem” J. of Heur. 18, 525–547 (2012).
MATH
Google Scholar
X. Bai, D. Zhao, S. Bai, Q. Wang, W. Li, and D. Mu, “Minimum connected dominating sets in heterogeneous 3D wireless Ad Hoc networks,” Ad Hoc Netw. 97, art. 102023 (2020).
Google Scholar
A. Berger, T. Fukunaga, H. Nagamochi, and O. Parekh, “Approximability of the capacitated b‑edge dominating set problem,” Theor. Comp. Sci. 385 (1–3), 202–213 (2007).
MathSciNet
MATH
Google Scholar
A. Berger and O. Parekh, “Linear time algorithms for generalized edge dominating set problems,” Algorithmica 59, 244–254 (2008).
MathSciNet
MATH
Google Scholar
S. Bermudo, J. C. Hernandez-Gomez, and J. M. Sigarreta, “Total k-domination in strong product graphs,” Discr. Appl. Math. 263, 51–58 (2019).
MathSciNet
MATH
Google Scholar
S. Bermudo, A. C. Martinez, MiraF. A. Hernandez, and J. M. Sigarreta, “On the global total k-domination number of graphs,” Discr. Appl. Math. 263, 42–50 (2019).
Google Scholar
J. Blum, M. Ding, A. Thaeler, and X. Cheng, “Connected dominating set in sensor networks and MANETs,” in Handbook of Combinatorial Optimization, by Ed. D.-Z. Du and P. M. Pardalos, (Springer, 2005), pp. 329–369.
A. Buchanan, J. S. Sung, V. Boginski, and S. Butenko, “On connected dominating set of restricted diameter,” EJOR 236 (2), 410–418 (2014).
MathSciNet
MATH
Google Scholar
S. Butenko, X. Cheng, C. A. S. Oliveira, and P. M. Pardalos, “A new heuristic for the minimum connected dominating set problem on ad hoc wireless networks” in Recent Developments in Cooperative Control and Optimization (Springer, 2004), pp. 61–73.
Google Scholar
Y. Caro, D. B. West, and R. Yuster, “Connected domination and spanning trees with many leaves,” SIAM J. Discr. Math. 13 (2), 202–211 (2000).
MathSciNet
MATH
Google Scholar
Y. Caro, A. Hansberg, and M. Henning, “Fair domination in graphs,” Discr. Math. 312, 2905–2914 (2012).
MathSciNet
MATH
Google Scholar
R. Carr, T. Fujito, G. Konjevod, and O. Parekh, “A, 2 1/10-approximation algorithm for a generalization of the weighted edge-dominating set problem,” J. Comb. Optim. 5, 317–326 (2001).
MathSciNet
MATH
Google Scholar
M.-S. Chang, Weighted domination of cocomparability graphs. Discr. Appl. Math. 80, 135–148 (1997).
MathSciNet
MATH
Google Scholar
Y. P. Chen and A. L. Liestman, “Approximating minimum size weakly-connected dominating sets for clus-tering mobile ad hoc networks,” MobiHoc, 165–172, (2002).
Y. P. Chen and A. L. Liestman, “Maintaining weakly connected dominating sets for clustering Ad-Hoc networks,” Ad Hoc Netw. 3, 629–642 (2005).
Google Scholar
X. Cheng, X. Huang, D. Li, W. Wu, and D.-Z. Du, “A polynomial-time approximation scheme for minimum connected dominating set in ad hoc wireless networks,” Networks 42 (4), 202–208 (2003).
MathSciNet
MATH
Google Scholar
C. J. Cheng, C. Lu, and Y. Zhou, “The k-power domination problem in weighted trees,” in AAIM 2018, LNCS 11343 (Springer, 2018), pp. 149–160.
Google Scholar
M. Chlebik and J. Chlebikova, “Approximation hardness of edge dominating set problems,” J. Comb. Optim. 11 (3), 279–290 (2006).
MathSciNet
MATH
Google Scholar
E. J. Cockayne, R. Dawes, and S. T. Hedetniemi, “Total domination in graphs. Networks,” 10, 211–215 (1980).
MathSciNet
MATH
Google Scholar
R. S. Coelho, P. F. S. Moura, and Y. Wakabayashi, “The k-hop connected dominating set problem: approximation and hardness.” J. Comb. Optim. 34, 1060–1083 (2017).
MathSciNet
MATH
Google Scholar
J.-F. Couturier, P. Heggernes, van 't P. Hof, and D. Kratsch, “Minimal dominating sets in graph classes: Combinatorial bounds and enumeration. Theor. Comp. Sci. 487, 82–94 (2013).
Google Scholar
Z. A. Dagdeviren, D. Aydin, and M. Cinsdikici, “Two population-based optimization algorithms for minimum weight connected dominating set problem,” Appl. Soft Comput. 59, 644–658 (2017).
Google Scholar
F. Dai and J. Wu, “An extended localized algorithm for connected dominating set formation in Ad Hoc wireless networks,” IEEE Trans. Parallel & Distrib. Syst. 15, 908–920 (2004).
Google Scholar
F. Dai and J. Wu, “On constructing k-connected k‑dominating set in wireless ad hoc and sensor networks,” J. Parallel & Distr. Comput. 66, 947–958 (2006).
MATH
Google Scholar
T. N. Dinh, Y. Shen, D. T. Nguyen, and M. T. Thai, “On the approximability of positive influence dominating set in social networks.” J. Com. Optim. 27, 487–503 (2014).
MathSciNet
MATH
Google Scholar
M. Dom, D. Lokshtanov, S. Saurabh, and Y. Villanger, “Capacitated domination and covering: a parameterized perspective,” in Proc. 3rd IWPEC, LNCS 5018 (Springer, 2008), pp. 78–90.
M. Dorfling and M. A. Henning, “A note on power domination in grid graphs,” Discr. Appl. Math. 154, 1023–1027 (2006).
MathSciNet
MATH
Google Scholar
D.-Z. Du, M. T. Thai, Y. Li, D. Liu, and S. Zhu, “Strongly connected dominating sets in wireless sensor networks with unidirectional links,” in APWeb 2006, LNCS 3841 (Springer, 2006), pp. 13–24.
Google Scholar
D.-Z. Du and P.-J. Wan, Connected Dominating Set: Theory and Applications (Springer, 2013).
MATH
Google Scholar
H. Du, Q. Ye, J. Zhong, Y. Wang, W. Lee, and H. Park, “PTAS for minimum connected dominating set with routing cost constraint in wireless sensor networksin,” COCOA 2010, Part 1, LNCS 6508 (Springer, 2020), pp. 252–259.
H. Du, Q. Ye, J. Zhong, Y. Wang, W. Lee, and H. Park, “Polynomial-time approximation scheme for minimum connected dominating set under routing cost constraint in wireless sensor networks,” Theor. Comp. Sci. 447, 38–43 (2012).
MathSciNet
MATH
Google Scholar
H. Du, L. Ding, W. Wu, D. Kim, P. M. Pardalos, and J. Willson, “Connected dominating set in wireless networks,” in Handbook of Combinatorial Optimization, Ed. by P. M. Pardalos, R. L. Graham, and D.-Z. Du, 2nd ed., (Springer, 2013), pp. 783–834.
Google Scholar
H. Du and H. Luo, “Routing-cost constrained connected dominating set,” in M.Y. Kao (ed.), Encyclopedia of Algorithms, Ed. by M. Y. Kao, (Springer, 2016), pp. 1879–1883.
K. Erciyes, O. Dagdeviren, D. Cokeslu, and D. Ozsoyeller, “Graph theoretic clustering algorithms in mobile ad hoc networks and wireless sensor networks - survey,” Appl. Comput. Math. 6 (2), 162–180 (2007).
MathSciNet
MATH
Google Scholar
F. V. Fomin, D. Kratsch, and G. J. Woeginger, “Exact (exponential) algorithms for the dominating set problem” in LNCS 3353, Ed. by J. Hromkovic, M. Nagl, and B. Westfechtel (Springer, 2004), pp. 245–256.
F. V. Fomin and D. M. Thilikos, “Dominating sets in planar graphs: branch-width and exponential speed-up,” SIAM J. Comput. 36 (2), 281–309 (2006).
MathSciNet
MATH
Google Scholar
D. Fu, L. Han, L. Liu, Q. Gao, and Z. Feng, “An efficient centralized algorithm for connected dominating set on wireless networks,” Procedia CS 56, 162–167 (2015).
Google Scholar
T. Fujito, “Approximability of the independent/connected edge dominating set problems,” Inform. Proc. Lett. 79, 261–266 (2001).
MathSciNet
MATH
Google Scholar
T. Fujito and H. Nagamochi, “A 2-approximation algorithm for the minimum weight edge dominating set problem,” Discr. Appl. Math. 118 (3), 199–207 (2002).
MathSciNet
MATH
Google Scholar
T. Fujie, “An exact algorithm for the maximum leaf spanning tree problem,” Comp. and Oper. Res. 30, 1931–1944 (2003).
MathSciNet
MATH
Google Scholar
T. Fukunaga and H. Nagamochi, “Approximation algorithm for the b-edge dominating set problem and its related problems,” in COCOON 2005, LNCS 3595 (Springer, 2005), pp. 747–756.
Google Scholar
T. Fukunaga, Approximation algorithms for highly connected multi-dominating sets in unit disk graphs. Algorithmica 80 (11), 3270–3292 (2018).
MathSciNet
MATH
Google Scholar
T. Fukunaga, “Adaptive algorithms for finding connected dominating sets in uncertain graphs,” Electr. Prepr., 19 p., Dec 29, (2019). http://arxiv.org/ abs/1912.12665 [cs.DS]
S. Funke, A. Kesselman, U. Meyer, and M. Segal, “A simple improved distributed algorithm for minimum CDS in unit disk graphs,” ACM Trans. Sensor Netw. 2 (3), 444–453 (2006).
Google Scholar
X. Gao, W. Wag, Z. Zhang, S. Zhu, and W. Wu, “A PTAS for minimum d-hop connected dominating set in growth-bounded graphs,” Optim. Lett. 4, 321–333 (2010).
MathSciNet
MATH
Google Scholar
M. R. Garey and D. S. Johnson, Computers and Intractability. The Guide to the Theory of NP-Completeness (W. H. Freeman and Company, San Francisco, 1979).
MATH
Google Scholar
W. Goddard and J. Lyle, “Independent dominating sets in triangle-free graphs,” J. Comb. Optim. 23 (1), 9–20 (2012).
MathSciNet
MATH
Google Scholar
S. Guha and S. Khuller, “Approximation algorithms for connected dominating sets,” Algorithmica 20, 374–387 (1998).
MathSciNet
MATH
Google Scholar
M. Hajian and N. J. Rad, “A new lower bound on the double domination number of a graph,” Discr. Appl. Math. 254, 280–282 (2019).
MathSciNet
MATH
Google Scholar
J. Harant and M. A. Henning, “On double dominating in graphs,” Discussiones Math. 25, 29–34 (2005).
MATH
Google Scholar
F. Harary and T. W. Haynes, “Double domination in graphs,” Ars Combin. 55, 201–213 (2000).
MathSciNet
MATH
Google Scholar
T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, 1998).
MATH
Google Scholar
T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and M. A. Henning, “Domination in graphs applied to electrical power networks,” SIAM J. on Discr. Math. 15, 519–529 (2002).
MathSciNet
MATH
Google Scholar
J. He, S. Ji, P. Fan, Y. Pan, and Y. Li, in “Constructing a load-balanced virtual backbone in wireless sensor networks,” in Proc. 2012 Int. Conf. on Computing, Networking and Communication (ICNC),
2012, pp. 959–963.
A.-R. Hedar and R. Ismail, “Hybrid genetic algorithm for minimum dominating set problem,” in ICCSA
2010, pp. 457–467.
M. A. Henning and N. J. Rad, “Locating-total domination in graphs,” Discr. Appl. Math. 160, 1986–1993 (2012).
MathSciNet
MATH
Google Scholar
M. A. Henning and N. J. Rad, “Bounds on neighborhood total domination in graphs,” Discr. Appl. Math. 161, 2460–2466 (2013).
MathSciNet
MATH
Google Scholar
M. A. Henning and A. Yeo, Total Domination in Graphs (Springer, 2013).
MATH
Google Scholar
M. A. Henning and A. J. Marcon, “On matching and semitotal domination in graphs,” Discr. Math. 324, 13–18 (2014).
MathSciNet
MATH
Google Scholar
M. A. Henning and D. Pradhan, “Algorithmic aspects of upper paired-domination in graphs,” Theor. Comp. Sci. 804, 98–114 (2020).
MathSciNet
MATH
Google Scholar
M. A. Henning, S. Pal, and D. Pradhan, “Algorithm and hardness results on hop domination in graphs,” Inform. Proc. Lett. 153, 105872 (2020).
MathSciNet
MATH
Google Scholar
N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic, “Dominating sets and connected dominating sets in dynamic graphs,” in STACS
2019, pp. 35:1–35:17.
C. K. Ho, Y. P. Singh, and H. T. Ewe, “An enhanced ant colony optimization metaheuristic for the minimum dominating set problem,” Appl. Artif. Intell. 20 (10), 881–903 (2006).
Google Scholar
J. Horton and K. Kilakos, “Minimum edge dominating sets,” SIAM J. Discr. Math. 6 (3), 375–387 (1993).
MathSciNet
MATH
Google Scholar
R. W. Irving, “On approximating the minimum independent dominating set,” Inf. Proc. Lett. 37 (4), 197–200 (1991).
MathSciNet
MATH
Google Scholar
L. Jia, R. Rajaraman, and T. Suel, “An efficient distributed algorithm for constructing small dominating sets,” Distrib. Comput. 15 (4), 193–205 (2002).
MATH
Google Scholar
R. K. Jullu, P. R. Prasad, and G. K. Das, “Distributed construciton of connected dominating set in unit disk graphs,” J. Parallel and Distr. Comput. 104, 159–166 (2017).
Google Scholar
M. J. Kao, C. S. Liao, and D. T. Lee, “Capacitated domination problem,” Algorithmica 60 (2), 274–300 (2011).
MathSciNet
MATH
Google Scholar
D. J. Kleitman and D. B. West, “Spanning trees with many leaves,” SIAM J. Discr. Math. 4 (1), 99–106 (1991).
MathSciNet
MATH
Google Scholar
S. Kundu and S. Majumder, “A linear time algorithm for optimal k-hop dominating set of a tree,” Inf. Process. Lett. 116 (2), 197–202 (2016).
MathSciNet
MATH
Google Scholar
J. K. Lan and G. J. Chang, “On the mixed domination problem in graphs,” Theor. Comp. Sci. 476, 84–93 (2013).
MathSciNet
MATH
Google Scholar
E. Lappas, S. D. Nikolopoulos, and L. Palios, “An O(n)-time algorithm for paired-domination on permutation graphs,” Eur. J. Combin. 34 (3), 593–608 (2013).
MathSciNet
MATH
Google Scholar
M. Sh. Levin, Modular System Design and Evaluation (Sprigner, 2015).
Google Scholar
M. Sh. Levin, “On combinatorial optimization for dominating sets (literature survey, new models),” Preprint (ResearchGate)), Sep. 4, (2020). Concurently: arxiv 2009.09288.https://doi.org/10.13140/RG.2.2.34919.68006
Y. Li, Y. Wu, C. Ai, and F. Beyah, “On the construction of k-connected m-dominating sets in wireless networks,” J. Comb. Optim. 23 (1), 118–139 (2012).
MathSciNet
MATH
Google Scholar
H. Li, Y. Yang, and B. Wu, “2-edge connected dominating sets and 2-connected dominating sets of a graph,” J. Comb. Optim. 31 (2), 713–724 (2016).
MathSciNet
MATH
Google Scholar
D. Liang, Z. Zhang, X. Liu, W. Wang, and Y. Jiang, “Approximation algorithms for minimum weight partial connected set cover problem,” J. Comb. Optim. 31 (2), 696–712 (2016).
MathSciNet
MATH
Google Scholar
C.-S. Liao, T.-J. Hsieh, X.-C. Guo, and C.-C. Chu, “Hybrid search for the optimal pmu placement problem on a power grid,” EJOR 243 (3), 985–994 (2015).
MathSciNet
MATH
Google Scholar
M. Liedloff, I. Todinca, and Y. Villanger, “Solving capacitated dominating set by using covering by subsets and maximum matching,” Discr. Appl. Math. 168, 60–68 (2014).
MathSciNet
MATH
Google Scholar
Z. Lin, H. Liu, X. Chu, Y.-W. Leung, and I. Stojmenovic, “Maximizing lifetime of connected-dominating set in cognitive radio,” in NETWORKING 2012, Part II, LNCS 7290 (Springer, 2012), pp. 316–330.
Google Scholar
G. Lin, W. Zhu, and M. M. Ali, “An effective hybrid memetic algorithm for the minimum weight dominating set problem,” IEEE Trans. on Evolut. Comput. 20 (6), 892–907 (2016).
Google Scholar
G. Lin, J. Guan, and H. Feng, “An ILP based memetic algorithm for finding positive influence dominating sets in social networks,” Physica A 500, 199–209 (2018).
MathSciNet
Google Scholar
C.-H. Liu, S.-H. Poon, and J.-Y. Lin, “Independent dominating set problem revised,” Theor. Comp. Sci. 562, 1–22 (2015).
MATH
Google Scholar
D. Lokshtanov, M. Mnich, and S. Saurabh, “A linear kernel for planar connected dominating set,” Theor. Comp. Sci. 412, 2536–2543 (2011).
MathSciNet
MATH
Google Scholar
C. Luo, W. Chen, J. Yu, Y. Wang, and D. Li, “A novel centralized algorithm for constructing virtual back-bones in wireless sensor networks,” EURASIP J. Wir. Commun. and Netw., art. 55 (2018).
M. Min, H. Du, X. Jia, C. X. Huang, S. C.-H. Huang, and W. Wu, “Improving construction for connected dominating set with Steiner tree in Wireless Sensor Networks,” J. Glob. Optim. 35, 111–119 (2006).
MathSciNet
MATH
Google Scholar
J. P. Mohanty, C. Mandal, C. Reade, and A. Das, “Construction of minimum connected dominating set in wireless sensor networks,” Ad Hoc Netw. 42, 61–73 (2016).
Google Scholar
J. P. Mohanty, C. Mandal, and C. Reade, “Distributed construction of minimum Connected Dominaitng Set in wireless sensor network using two-hop information,” Comp. Netw. 123, 137–152 (2017).
Google Scholar
T. N. Nguen and D. T. Huynh, “Connected d-hop dominating sets in mobile ad hoc networks,” in Proc. 2005 4th Int. Symp. on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks,
2006, Vols. 1 and 2.
T. Nieberg and J. Hurink, “A PTAS for the minimum dominating set problem in unit disk graphs,” in WAOA 2005, LNCS 3879 (Springer, 2005), pp. 296–306,
Google Scholar
F. G. Noccetti, J. S. Gonzalez, and I. Stojmenovic, “Connectivity based k-hop clustering in wireless ad hoc networks,” Telecom. Syst. 22 (1-4), 205–220 (2003).
Google Scholar
Z. Nutov, “Improved approximation algorithms for k‑connected m-dominating set problems,” Electr. Prepr., 6 p., Mar. 13, (2017). http://arxiv.org/abs/ 1703.04230 [cs.DC].
C. A. S. Oliveira and P. M. Pardalos, “Ad Hoc networks: optimization problems and solution methods,” in M. X. Cheng, Y. Li, and D.-Z. Du (eds), Combinatorial Optimization in Communication Networks (Springer, 2006), pp. 147–170.
Google Scholar
B. S. Panda and D. Pradhan, “A linear time algorithm for computing a minimum paired-dominating set of a convex bipartite graph,” Discr. Appl. Math. 161, 1776–1783 (2013).
MathSciNet
MATH
Google Scholar
N. Parthiban, I. Rajasingh, and Rajan R. Sundara, “Minimum connected dominating set for certain circulant networks,” Procedia CS 57, 587–591 (2015).
Google Scholar
P. Pinacho-Davidson, S. Bouamama, and C. Blum, “Application of CMSA to the minimum capacitated dominating set problem,” in GECCO
2019, pp. 321–328.
A. Potluri and A. Singh, “Hybrid metaheuristic algorithms for minimum weight dominating set,” Appl. Soft Comput. 13, 76–88 (2013).
Google Scholar
D. Pradhan and B. S. Panda, “Computing a minimum paired-dominating set in strongly orderable graphs,” Discr. Appl. Math. 253, 37–50 (2019).
MathSciNet
MATH
Google Scholar
H. Qiao, L. Kang, M. Gardei, and D.-Z. Du, “Paired-domination of trees,” J. Glob. Optim. 25 (1), 43–54 (2003).
MathSciNet
MATH
Google Scholar
N. J. Rad and L. Volkmann, “A note on the independent domination number in graphs,” Discr. Appl. Math. 161, 3087–3089 (2013).
MathSciNet
MATH
Google Scholar
R. Ramalakshmi and S. Radhaktishnan, “Energy efficient stable connected dominating set construction in mobile ad hoc networks,” in CCSIT 2012, Part I, LNICST 84 (Springer, 2012), pp. 64–72, 2012.
Google Scholar
J. M. M. van Rooij and H. L. Bodlaender, “Exact algorithms for dominating set,” Discr. Appl. Math. 159, 2147–2164 (2011).
MathSciNet
MATH
Google Scholar
L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K.-I. Ko, “A greedy approximation for minimum connected dominating sets,” Theor. Comp. Sci. 329 (1-3), 325–330 (2004).
MathSciNet
MATH
Google Scholar
O. Schaudt and R. Schrader, “The complexity of connected dominating sets and total dominating sets with specified induced subgraphs,” Inf. Proc. Lett. 112, 953–957 (2012).
MathSciNet
MATH
Google Scholar
W. Shang, F. Yao, P. Wan, and X. Hu, “On minimum m-connected k-dominating set problem in unit disc graph,” J. of Comb. Optim. 16 (2), 99–106 (2008).
MathSciNet
MATH
Google Scholar
T. Shi, S. Cheng, Z. Cai, Y. Li, and J. Li, “Exploiting connected dominating sets in energy harvest networks,” IEEE/ACM Trans. on Netw. 25 (3), 1803–1817 (2017).
Google Scholar
Y. Shi, Z. Zhang, and D.-Z. Du, “Approximation algorithm for minimum weight (k; m)-CDS problem in unit disk graph,” Electr. Prepr., Jan. 4, 2019. http://arxiv.org/abs/1508.005515 [cs.DM].
L. Simonetti, A. S. da Cunha, and A. Lucena, “The minimum connected dominating set problem: formulation, valid inequalities and a Branch-and-Bound algorithm,” in INOC 2011, LNCS 6701 (Springer, 2011), pp. 162–169.
Google Scholar
I. Stojmenovic, M. Seddigh, and J. Zunic, “Dominating sets and neighbor elimination-based broadcasting algorithms in wireless networks,” IEEE Trans. Paral. and Distr. Syst. 13, 14–25 (2002).
Google Scholar
X. Sun, Y. Yang, and M. Ma, “Minimum connected dominating set algorithms for Ad Hoc networks,” Sensors 19 (8), art. 1919 (2019).
Google Scholar
S. Surendran and S. Vijayan, “Distributed computation of connected dominating set for multi-hop wireless networks,” Procedia CS 63, 482–487 (2015).
Google Scholar
A. Suzuki, A. E. Mouawad, and N. Nishimura, “Reconfiguration of dominating sets,” J. Comb. Optim. 32 (4), 1182–1195 (2016).
MathSciNet
MATH
Google Scholar
M. Thai, N. Zhang, R. Tiwari, and X. Xu, “On approximation algorithms of k-connected m-dominating sets in disk graphs,” Theor. Comput. Sci. 385 (1–3), 49–59 (2007).
MathSciNet
MATH
Google Scholar
Y. T. Tsai, Y. L. Lin, and F. R. Hsu, “Efficient algorithms for the minimum connected domination on trapezoid graphs,” Inform. Sci. 177 (12), 2405–2417 (2007).
MathSciNet
MATH
Google Scholar
F. J. Vazquez-Araujo, A. Dapena, M. J. S. Salorio, and P.-M. Castro-Castro, “Calculation of the connected dominating set considering vertex importance metrics,” Entropy 20 (2) (2018).
P.-J. Wan and K. M. Alzoubi, “A simple heuristic for minimum connected dominating set in graphs,” Int. J. of Found. Comp. Sci. 14 (2), 323–333 (2003).
MathSciNet
MATH
Google Scholar
P.-J. Wan, L. Wang, and F. Yao, “Two-phase approximation algorithms for minimum CDS in wireless ad hoc networks,” in IEEE ICDCS, (IEEE, New York, 2008), pp. 337–344.
Google Scholar
F. Wang, E. Camacho, and K. Xu, “Positive influence dominating set in social networks,” Theor. Comp. Sci. 412 (3), 265–269 (2011).
MathSciNet
MATH
Google Scholar
Z. Wang, W. Wang, J.-M. Kim, B. Thuraisingham, and W. Wu, “PTAS for the minimum weighted dominating set in growth bounded graphs,” J. Glob. Optim. 54 (3), 641–648 (2012).
MathSciNet
MATH
Google Scholar
Y. Wang, W. Wang, and X. -Y. Li, “Weighted connected dominating set,” in Kao M.-Y. (ed), Encyclopedia of Algorithms (Springer, 2016), pp. 2359–2363.
Google Scholar
J. Wu and H. Li, “A dominating set based routing scheme in Ad Hoc wireless sensor networks,” Telecom. Syst. 18 (1-3), 13–36 (2001).
MATH
Google Scholar
J. Wu and W. Lou, “Extended multipoint relays to determine connected dominating sets in MANETs,” IEEE Trans. on Comput. 55, 334–347 (2006).
Google Scholar
Y.-F. Wu, Y.-L. Xu, and G.-L. Chen, “Approximation algorithms for Steiner connected dominating set,” J. Comp. Sci. and Techn. 20 (5), 713–716 (2005).
MathSciNet
Google Scholar
W. Wu, H. Du, X. Jia, Y. Li, and S. C.-H. Huang, “Minimum connected dominating sets and maximal independent sets in unit disk graphs,” Theor. Comp. Sci. 352 (1–3), 1–7 (2006).
MathSciNet
MATH
Google Scholar
Y. Wu and Y. Li, “Connecting dominating sets,” in H. Liu, Y.W. Leung, X. Chu (eds), Handbook of Ad Hoc and Sensor Wireless Networks: Architecture,
Algorithms and Protocols, pp. 19–39 (2009).
Google Scholar
Y. Wu, X. Gao, and Y. Li, “A framework of distributed indexing and data dissemination in large scale wireless sensor networks,” Optim. Lett. 4 (3), 335–345 (2010).
MathSciNet
MATH
Google Scholar
L. Wu, H. Du, W. Wu, Y. Hu, A. Wang, and W. Lee, “PTAS for routing-cost constrained minimum connected dominating set in growth bounded graphs,” J. Comb. Optim. 30 (1), 18–26 (2015).
MathSciNet
MATH
Google Scholar
M. Yannakakis and F. Gavril, “Edge dominating sets in graphs,” SIAM J. Appl. Math. 38 (3), 364–372 (1980).
MathSciNet
MATH
Google Scholar
H.-Y. Yang, C.-H. Lin, and M.-J. Tsai, “Distributed algorithm for efficient construction and maintenance of connected k-hop dominating set in mobile ad hoc networks,” IEEE Trans. Mob. Comput. 7, 444–457 (2008).
Google Scholar
J. Y. Yu and P. H. J. Chong, “A survey of clustering schemes for mobile Ad Hoc networks,” IEEE Commun. Surv. & Tut. 7 (1), 32–47 (2005).
Google Scholar
R. Yu, X. Wang, and S. K. Das, “EEDTC: energy-efficient dominating tree construction in multi-hop wireless networks,” Pervasive and Mob. Comput. 5 (4), 318–333 (2009).
Google Scholar
J. Yu, N. Wang, and G. Wang, “Constructing minimum extended weakly-connected dominating sets for clustering in ad hoc networks,” J. Parallel Distr. Comput. 72 (1), 35–47 (2012).
MATH
Google Scholar
J. Yu, N. Wang, G. Wang, and D. Yu, “Connected dominating sets in wireless ad hoc and sensor networks—a comprehensive survey,” Comp. Commun. 36 (2), 121–134 (2013).
Google Scholar
Z. Zhang, X. Gao, W. Wu, and D.-Z. Du, “A PTAS for minimum connected dominating set in 3-dimensional wireless sensor networks,” J. Glob. Optim. 45, 451–458 (2009).
MathSciNet
MATH
Google Scholar
Z. Zhang, J. Zhou, X. Huang, and D.-Z. Du, “Performance guaranteed approximation algorithm for minimum k-connected m-fold dominating set,” Electr. Prepr., 14 p., Aug. 27, (2016). http://arxiv.org/ abs/1608.07634 [cs.DM].
Y. Zhao, Z. Liao, and L. Miao, “On the algorithmic complexity of edge total domination,” Theor. Comp. Sci. 557, 28–33 (2014).
MathSciNet
MATH
Google Scholar
J. Zhou, Z. Zhang, W. Wu, and K. Xing, “A greedy algorithm for the fault-tolerant connected dominating set in a general graph,” J. Comb. Optim. 28 (1), 310–319 (2014).
MathSciNet
MATH
Google Scholar
F. Zou, Y. Wang, X.-H. Xu, X. Li, H. Du, P. Wan, and W. Wu, “New approximations for minimum-weighted dominating sets and minimum-weighted connected dominating sets on unit-disk graphs,” Theor. Comp. Sci. 412 (3), 198–208 (2011).
MathSciNet
MATH
Google Scholar