Skip to main content
Log in

Parametric Pumping of Magnons in a Hybrid Magnon–Phonon Resonator

  • PHYSICAL PROCESSES IN ELECTRON DEVICES
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The conditions for the parametric instability of magnons under the action of purely elastic pumping, which are modes of a composite acoustic wave resonator containing ferrimagnet and piezoelectric films on a single-crystal substrate, are considered. Electrical excitation of bulk acoustic waves occurs due to the piezoelectric effect (in a ZnO film) at resonant frequencies fn of the resonator. In a magnetically ordered layer (in a film of yttrium iron garnet), acoustic modes, when the threshold power is exceeded, excite magnons at frequencies fn/2. It is shown that, in the case of pumping by transverse acoustic modes, the threshold is several tens of times smaller than in the case of pumping by longitudinal modes and is approximately 100 μW, which is in agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. P. Delsing, A. N. Cleland, M. J. A. Schuetz, et al., J. Phys. D Appl. Phys. 52, 353001 (2019).

    Article  Google Scholar 

  2. A. Barman, G. Gubbiotti, S. Ladak, et al., J. Phys. Condens. Matter 33, 117146 (2021).

    Article  Google Scholar 

  3. D. A. Bozhko, V. I. Vasyuchka, A. V. Chumak, and A. A. Serga, Low Temp. Phys. 46, 383 (2020).

    Article  Google Scholar 

  4. V. J. Gokhale, B. P. Downey, D. S. Katzer, et al., Nature Commun. 11, 2314 (2020).

    Article  Google Scholar 

  5. D. A. Bas, P. J. Shah, M. E. McConney, and M. R. Page, J. Appl. Phys. 126, 114501 (2019).

    Article  Google Scholar 

  6. Y. Li, C. Zhao, W. Zhang, et al., APL Mater. 9, 060902 (2021).

    Article  Google Scholar 

  7. A. V. Azovtsev, A. I. Nikitchenko, and N. A. Pertsev, Phys. Rev. Mater. 5, 054601 (2021).

    Article  Google Scholar 

  8. C. Kittel, Phys. Rev. 110, 836 (1958).

    Article  MathSciNet  Google Scholar 

  9. C. W. Haas, J. Phys. Chem. Solids 27, 1687 (1966).

    Article  Google Scholar 

  10. H. Matthews and F. R. Morgenthaler, Phys. Rev. Lett. 13 (21), 614 (1964).

    Article  Google Scholar 

  11. M. Pomerantz, Phys. Rev. Lett. 7, 312 (1961).

    Article  Google Scholar 

  12. M. Weiler, H. Huebl, F. S. Goerg, et al., Phys. Rev. Lett. 108, 176601 (2012).

    Article  Google Scholar 

  13. K. Uchida, T. An, Y. Kajiwara, et al., Appl. Phys. Lett. 99, 212501 (2011).

    Article  Google Scholar 

  14. N. Polzikova, S. Alekseev, I. Kotelyanskii, et al., J. Appl. Phys. 113, C704 (2013).

    Article  Google Scholar 

  15. S. Cherepov, P. K. Amiri, J. G. Alzate, et al., Appl. Phys. Lett. 104, 082403 (2014).

    Article  Google Scholar 

  16. P. Chowdhury, A. Jander, and P. Dhagat, IEEE Magnetics Lett. 8, 3108204 (2017).

    Article  Google Scholar 

  17. I. Lisenkov, A. Jander, and P. Dhagat, Phys. Rev. B 99, 184433 (2019).

    Article  Google Scholar 

  18. H. Keshtgar, M. Zareyan, and G. E. W. Bauer, Solid State Commun. 198, 30 (2014).

    Article  Google Scholar 

  19. N. I. Polzikova, S. G. Alekseev, V. A. Luzanov, and A. O. Raevskiy, Phys. Solid State 60, 2211 (2018).

    Article  Google Scholar 

  20. N. I. Polzikova, S. G. Alekseev, I. I. Pyataikin, et al., AIP Adv. 8 (5), 56128 (2018).

    Article  Google Scholar 

  21. N. I. Polzikova, S. G. Alekseev, V. A. Luzanov, and A. O. Raevskiy, J. Magn. Magn. Mater. 479, 38 (2019).

    Article  Google Scholar 

  22. S. G. Alekseev, S. E. Dizhur, N. I. Polzikova, et al., Appl. Phys. Lett. 117, 72408 (2020).

    Article  Google Scholar 

  23. Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).

    Article  Google Scholar 

  24. E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  25. J. Li, M. Liu, and Ch. Wang, Micromachines 7 (9), 159 (2016).

    Article  Google Scholar 

  26. S. G. Alekseev, I. M. Kotelyanskii, N. I. Polzikova, and G. D. Mansfel’d, J. Commun. Technol. Electron. 60, 300 (2015).

    Article  Google Scholar 

  27. G. D. Mansfel’d, S. G. Alekseev, and N. I. Polzikova, Acoustical Physics 54, 475 (2008).

    Article  Google Scholar 

  28. S. G. Alekseev, V. A. Luzanov, and N. I. Polzikova, J. Commun. Technol. Electron. 65, 1339 (2020).

    Article  Google Scholar 

  29. R. L. Comstock and W. G. Nilsen, Phys. Rev. 136 (2A), A442 (1964).

    Article  Google Scholar 

Download references

Funding

This study was carried out a state assignment and with partial financial support from the Russian Foundation for Basic Research (project no. 20-07-01075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Polzikova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polzikova, N.I., Alekseev, S.G. & Raevskii, A. Parametric Pumping of Magnons in a Hybrid Magnon–Phonon Resonator. J. Commun. Technol. Electron. 66, 1296–1301 (2021). https://doi.org/10.1134/S1064226921110061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921110061

Navigation