Skip to main content
Log in

Identification of the Geometric Form of Local Reflectors of a Space Vehicle by a Broadband Polarimeter

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The possibility of increasing the information content of radar methods for observing spacecrafts has been investigated. A method for identifying the geometric shape of local reflectors is proposed, based on the combined application of polarization methods and a model of scattering of electromagnetic waves described by the geometric theory of diffraction. The main features of the implementation of the proposed method are considered, and the results of its approbation in the problem of analyzing the local reflectors of a low-orbit spacecraft are presented. It is shown that the proposed method makes it possible to expand the range of geometric types of identifiable reflectors and to evaluate the geometric shape of the corresponding structural elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. Saleh and Jean-Francois, Spacecraft Reliability and Multi-state Failures: a Statistical Approach (Wiley & Sons Limited, 2011).

    Book  Google Scholar 

  2. Y. Zou, X. Gao, X. Li, and Y. Liu, in Proc. 8th Int. Congress on Image and Signal Processing (CISP), Shenyang, Dec. 08–12, 2015 (IEEE, New York, 2015), p. 1220.

  3. H. Yan, S. Li, H. Li, and H. Yin, in Proc. IEEE Int. Conf. on Computational Electromagnetics (ICCEM), Chengdu. Mar. 26 –28, 2018 (IEEE, New York, 2018), p. 12.

  4. X. Xiao-Yu, Y. Huo, and C. Hong-Cheng, Proc. IEEE Int. Conf. on Computational Electromagnetics (ICCEM), Chengdu. 26–28 Mar. 2018 (IEEE, New York, 2018), p. 26.

  5. E. L. Kapylov, V. V. Neelov, and A. A. Samorodov, Vopr. Radioelektron., No. 1, 13 (2019).

  6. S. Zheng, X. Zhang, B. Zong, and J. Li, in Proc. Photonics & Electromagn. Research Symp. – Fall (PIERS–Fall), Xiamen, Dec. 17–20, 2019 (IEEE, New York, 2019), 2282.

  7. P. Hu, S. Xu, J. Zou, and Z. Chen, in Proc. IEEE SENSORS, Glasgow, 29 Oct.–1 Nov., 2017 (IEEE, New York, 2017).

  8. S. Jia and D. La, in Proc. IEEE Advanced Inf. Technol., Electronic and Automation Control Conf. (IAEAC). Chongqing, Dec. 18–20, 2015 (IEEE, New York, 2015), p. 636.

  9. H. H. Qamar, M. B. El-Mashade, A. E. Farahat, and K. F. Hussein, in Proc. 6th Int. Conf. on Advanced Control Circuits and Systems (ACCS) & 5th Int. Conf. on New Paradigms in Electronics & Inf. Technol. (PEIT), Hurgada, 19–21 Jul. 2019 (IEEE, New York, 2019), p. 167.

  10. J. A. Jackson and R. L. Moses, Proc. SPIE 6237 (8), 205 (2006).

    Google Scholar 

  11. T. Dallmann and D. Heberling, Electron. Lett. 53 (13), 877 (2009).

    Article  Google Scholar 

  12. D. Li and Y. Zhang, IEEE Trans. Geosci. Remote Sens. 54 (2), 723 (2016).

    Article  Google Scholar 

  13. D. Li and Y. Zhang, in Proc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Beijing, Jul. 10–15, 2016 (IEEE, New York, 2016), p. 4679.

  14. D. Li and Y. Zhang, in Proc. 11th European Conf. on Synthetic Aperture Radar, Hamburg, Jun. 6–19, 2016 (IEEE, New York, 2016), p. 14.

  15. X. Liu, L. Jiao, D. Zhang, and F. Liu, in Proc. IEEE Int. Geoscience and Remote Sensing Symp, Yokohama, 28 Jul.–2 Aug., 2019 (IEEE, New York, 2019), p. 3181.

  16. H. Bi, J. Sun, and Z. Xu, in Proc. Int. Workshop on Remote Sensing with Intelligent Proc. (RSIP), Shanghai, 18–21 May, 2017 (IEEE, New York, 2017), p. 1.

  17. F. Zhu, Y. Zhang, and D. Li, IET Radar, Sonar & Navigat. 2, 209 (2018).

    Article  Google Scholar 

  18. D. Li and Y. Zhang, in Proc. 10th Eur. Conf. on Synthetic Aperture Radar, Berlin, 6–9 Jun. 2014 (IEEE, New York, 2014), p. 68.

  19. Z. Xiang, B. Chen, and M. Yang, IEEE Antennas and Wireless Propag. Lett. 16 (2), 1313 (2017).

    Article  Google Scholar 

  20. Z. Xiang, B. Chen, and M. Yang, in Proc. Int. Conf. on Radar, Guangzhou, 10–12 Oct. 2016 (IEEE, New York, 2016), p. 126.

  21. X. Qin, T. Hu, W. Yu, P. Wang, et al., in Proc. IEEE Int. Geoscience and Remote Sensing Symp., Valencia, 22–27 Jul. 2018 (IEEE, New York, 2018), p. 645.

  22. E. Knott, J. Shaeffer, and M. Tuley, Radar Cross Section, 2nd ed. (SciTech, New York, 2004).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Neyolov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neyolov, V.V., Shaldaev, S.E. & Samorodov, A.A. Identification of the Geometric Form of Local Reflectors of a Space Vehicle by a Broadband Polarimeter. J. Commun. Technol. Electron. 66, 714–721 (2021). https://doi.org/10.1134/S106422692106019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422692106019X

Navigation