Skip to main content
Log in

Generalized Modulation Scheme of GBOC for Global Navigation Satellite System

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The Generalized Binary Offset Carrier (GBOC) modulations can offer additional degrees of freedom for shaping the spectrum of navigation signal and provide superior performance in code tracking, multipath and compatibility than traditional Binary Phase Shift Keying (BPSK) and Binary Offset Carrier (BOC) modulations. This paper proposes a generalized modulation scheme for GBOC modulation design. Firstly, the generalized waveform of GBOC modulations is proposed. Then, the proposed construction method of GBOC modulations is presented, and the consistency with traditional GBOC modulations is investigated. Finally, the generalized autocorrelation functions of GBOC modulations are derived based on the inverse Fourier transform method. The results show the new modulation scheme has good consistency with traditional method and can provide the opportunity for flexible satellite payload design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. J. J. Spilker, AIAA Prog. Astron. Aeron. 164, 57–120 (1997).

  2. J. W. Betz, Navigation (J. of ION) 48, 227–246 (2001).

  3. M. S. Yarlykov, J. Commun. Technol. Electron. 54, 912–924 (2009).

  4. J. A. Avila-Rodriguez, G. W. Hein, and S. Wallner, et al., Navigation (J. of ION) 55, 15–28 (2008).

  5. J. A. Avila-Rodriguez, PhD Thesis, (Univ. FAF Munich, Neubiberg, 2008).

  6. M. S. Yarlykov, J. Commun. Technol. Electron. 55, 1056–1071 (2010).

    Article  Google Scholar 

  7. D. Borio, IET Radar, Sonar & Navigation 13, 1998– 2007 (2019).

  8. W. Liu, Y. Hu, and X. Q. Zhan, Electron. Lett. 48, 284–285 (2012).

  9. W. Liu and Y. Hu, J. Commun. Technol. Electron. 59, 1206–1214 (2014).

  10. M. S. Yarlykov, J. of Commun. Technol. Electron. 62, 1109–1121 (2017).

    Article  Google Scholar 

  11. M. S. Yarlykov and S. M. Yarlykova, J. Commun. Technol. Electron. 64, 689–704 (2019).

    Article  Google Scholar 

  12. M. S. Yarlykov, J. Commun. Technol. Electron. 63, 880–894 (2018).

    Article  Google Scholar 

  13. C. J. Hegarty, J. W. Betz, and A. Saidi, in Proc. 60th Ann. Meeting Instit. Navigation, Dayton., June 7–9, 2004 (ION, Dayton, 2004), pp. 56–64.

  14. M. S. Yarlykov and S. M. Yarlykova, J. Commun. Technol. Electron. 65, 69–83 (2020).

    Article  Google Scholar 

  15. M. S. Yarlykov, J. Commun. Technol. Electron. 64, 763–773 (2019).

    Article  Google Scholar 

  16. L. Wang, X. Huang, J. Li, et al., IET Radar, Sonar & Navigation 14, 870–878 (2020).

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program (2019YFB1600605), National Natural Science Foundation of China (52071199), Shanghai Pujiang program (18PJD017), Shanghai Natural Science Foundation (18ZR1417100, 19ZR1422800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hu.

APPENDIX

APPENDIX

A. PSD of the Modulation Term for the Proposed Sine GBOC Modulations

Based on Euler’s formula and defining \(A = \frac{{2\pi f}}{{n{{f}_{{\text{c}}}}}}\), expression (17) can be rewritten as

$${{G}_{{{\text{mod}}}}}\left( f \right) = n + \left[ {\sum\limits_{i = 1}^{n - 1} {\left( {n - i - 2} \right)\left( {{\text{exp(}}ijA{\text{)}} + {\text{exp(}}{\kern 1pt} - {\kern 1pt} ijA{\text{)}}} \right)} } \right] = n + \Phi \left( {jA} \right) + \Phi \left( { - jA} \right),$$
(A.1)

where

$$\begin{gathered} \Phi \left( {jA} \right) = \left( {n - i} \right)\sum\limits_{i = 1}^{n - 1} {{\text{exp(}}ijA{\text{)}}} - 2\sum\limits_{i = 1}^{n - 1} {{\text{exp(}}ijA{\text{)}}} \\ = \frac{{\left( {n - 1} \right){\text{exp(}}jA{\text{)}} + \exp [j\left( {n + 1} \right)A] - n{\text{exp(2}}ijA{\text{)}}}}{{{{{\left( {{\text{exp(}}jA{\text{)}} - 1} \right)}}^{2}}}} - 2\frac{{{\text{exp}}(njA) - {\text{exp(}}jA{\text{)}}}}{{{\text{exp(}}jA{\text{)}} - 1}}, \\ \end{gathered} $$
(A.2)

and

$$\begin{gathered} \Phi \left( { - jA} \right) = \left( {n - i} \right)\sum\limits_{i = 1}^{n - 1} {{\text{exp(}} - ijA{\text{)}}} - 2\sum\limits_{i = 1}^{n - 1} {{\text{exp(}} - ijA{\text{)}}} \\ = \frac{{\left( {n - 1} \right)\exp ( - jA) + \exp [ - \left( {n + 1} \right)jA] - n\exp ( - j2A)}}{{{{{\left( {\exp ( - jA) - 1} \right)}}^{2}}}} - 2\frac{{\exp ( - njA) - \exp ( - jA)}}{{\exp ( - jA) - 1}}\,. \\ \end{gathered} $$
(A.3)

Based on expressions (A.1), (A.2) and (A.3), the modulating term \({{G}_{{{\text{mod}}}}}\left( f \right)\) is

$$\begin{gathered} {{G}_{{{\text{mod}}}}}\left( f \right) = n + \frac{{\left( {n - 3} \right)\exp (jA) - \exp [\left( {n + 1} \right)jA] - \left( {n - 2} \right)\exp (2jA) + 2\exp (njA)}}{{{{{\left( {\exp (jA) - 1} \right)}}^{2}}}} \hfill \\ + \,\,\frac{{\left( {n - 3} \right)\exp ( - jA) - \exp [ - \left( {n + 1} \right)jA] - \left( {n - 2} \right)\exp ( - 2jA) + 2\exp ( - njA)}}{{{{{\left( {\exp ( - jA) - 1} \right)}}^{2}}}}. \hfill \\ \end{gathered} $$
(A.4)

Simplifying expressions (A.4) using Euler’s formula yields

$${{G}_{{{\text{mod}}}}}\left( f \right) = \frac{{16n{{{\sin }}^{4}}\left( {\frac{A}{2}} \right) + 2\left( \begin{gathered} - 8n{{\sin }^{4}}\left( {\frac{A}{2}} \right) + 4{{\sin }^{2}}\left( {\frac{A}{2}} \right) + 16{{\sin }^{4}}\left( {\frac{A}{2}} \right) \\ - \,\,8{{\sin }^{3}}\left( {\frac{A}{2}} \right)\sin \left( {\frac{{2n - 1}}{2}A} \right) - 4{{\sin }^{2}}\left( {\frac{A}{2}} \right)\cos \left[ {\left( {n - 1} \right)A} \right] \\ \end{gathered} \right)}}{{16{{{\sin }}^{4}}\left( {\frac{A}{2}} \right)}}.$$
(A.5)

and its simplest version is:

$${{G}_{{{\text{mod}}}}}\left( f \right) = \frac{{{{{\cos }}^{2}}\left( {\frac{n}{2}A} \right) + 2{{{\sin }}^{2}}\left( {\frac{A}{2}} \right) - \cos \left[ {\left( {n - 1} \right)A} \right]}}{{{{{\sin }}^{2}}\left( {\frac{A}{2}} \right)}}.$$
(A.6)

B. Proof of Consistency of the Traditional and the Proposed GBOC Modulations

Again, we define \(A = \frac{{2\pi f}}{{n{{f}_{{\text{c}}}}}}\), expression (20) can be rewritten as

$${{G}_{{{\text{GBO}}{{{\text{C}}}_{{\sin }}}\left( {{{f}_{{\text{s}}}}{\text{,}}{{f}_{{\text{c}}}}} \right)}}}\left( f \right) = \frac{{{{f}_{{\text{c}}}}}}{{{{{\left( {\pi f} \right)}}^{2}}}}\left\{ {{{{\sin }}^{2}}\left( {\frac{n}{2}A} \right) - \sin \left( {nA} \right)\sin \left[ {\left( {n - 1} \right)A} \right] + 4{{{\sin }}^{2}}\left( {\frac{{n - 1}}{2}A} \right){{{\cos }}^{2}}\left( {\frac{n}{2}A} \right)} \right\}.$$
(B.1)

After a series of trigonometric transformations yields

$$\begin{gathered} {{G}_{{{\text{GBO}}{{{\text{C}}}_{{\sin }}}\left( {{{f}_{{\text{s}}}},{{f}_{{\text{c}}}}} \right)}}}\left( f \right) = \frac{{{{f}_{{\text{c}}}}}}{{{{{\left( {\pi f} \right)}}^{2}}}}\left[ {{{{\sin }}^{2}}\left( {\frac{n}{2}A} \right) + \cos \left( {nA} \right) - \cos \left( {\left( {n - 1} \right)A} \right) + 2{{{\sin }}^{2}}\left( {\frac{A}{2}} \right)} \right] \\ = \frac{{{{f}_{{\text{c}}}}}}{{{{{\left( {\pi f} \right)}}^{2}}}}\left[ {{{{\cos }}^{2}}\left( {\frac{n}{2}A} \right) - \cos \left( {\left( {n - 1} \right)A} \right) + 2{{{\sin }}^{2}}\left( {\frac{A}{2}} \right)} \right]\,\,. \\ \end{gathered} $$
(B.2)

Also, expression (19) can be rewritten as

$$\begin{gathered} {{G}_{{{\text{GBOC}}\left( {{{{\left\{ {{{s}_{i}}} \right\}}}_{{\chi = 2}}}{\text{, }}{{f}_{{\text{c}}}}} \right)}}}\left( f \right) = \frac{{{{f}_{{\text{c}}}}}}{{{{{\left( {\pi f} \right)}}^{2}}}} \\ \times \,\,\left[ {{{{\cos }}^{2}}\left( {\frac{n}{2}A} \right) + 2{{{\sin }}^{2}}\left( {\frac{A}{2}} \right) - \cos \left( {\left( {n - 1} \right)A} \right)} \right]. \\ \end{gathered} $$
(B.3)

As we can see from expressions (B.2) and (B.3), \({{G}_{{{\text{GBOC}}\left( {{{{\left\{ {{{s}_{i}}} \right\}}}_{{\chi = 2}}}{\text{, }}{{f}_{{\text{c}}}}} \right)}}}\left( f \right)\) is equal to \({{G}_{{{\text{GBO}}{{{\text{C}}}_{{\sin }}}\left( {{{f}_{{\text{s}}}},{{f}_{{\text{c}}}}} \right)}}}\left( f \right)\).

C. PSD of the Modulation Term for the Proposed Cosine GBOC Modulations

Similar to sine GBOC modulations, the PSD of the modulation term, expression (21) can be rewritten as

$$\begin{gathered} {{G}_{{{\text{mod}}}}}\left( f \right) = n + 2\cos \left[ {\left( {n - 1} \right)A} \right] + \left[ {\sum\limits_{i = 1}^{n - 2} {\left( {n - i - 4} \right)\left( {{\text{exp(}}ijA{\text{)}} + \exp ( - ijA)} \right)} } \right] = n + 8\cos \left[ {\left( {n - 1} \right)A} \right] \\ + \,\,\left[ {\sum\limits_{i = 1}^{n - 1} {\left( {n - i - 4} \right)\left( {{\text{exp(}}ijA{\text{)}} + \exp ( - ijA)} \right)} } \right] = n + 8\cos \left[ {\left( {n - 1} \right)A} \right] + \Phi \left( {jA} \right) + \Phi \left( { - jA} \right)\,, \\ \end{gathered} $$
(C.1)

where

$$\begin{gathered} \Phi \left( {jA} \right) = \left( {n - i} \right)\sum\limits_{i = 1}^{n - 1} {{\text{exp(}}ijA{\text{)}}} - 4\sum\limits_{i = 1}^{n - 1} {{\text{exp(}}ijA{\text{)}}} \\ = \frac{{\left( {n - 1} \right)\exp (jA) + \exp [j\left( {n + 1} \right)A] - n\exp (2jA)}}{{{{{\left( {\exp (jA) - 1} \right)}}^{2}}}} - 4\frac{{\exp (njA) - \exp (jA)}}{{\exp (jA) - 1}} \\ \end{gathered} $$
(C.2)

and

$$\begin{gathered} \Phi \left( { - jA} \right) = \left( {n - i} \right)\sum\limits_{i = 1}^{n - 1} {{\text{exp(}} - ijA{\text{)}}} - 4\sum\limits_{i = 1}^{n - 1} {{\text{exp(}} - ijA{\text{)}}} \\ = \frac{{\left( {n - 1} \right)\exp ( - jA) + \exp [ - \left( {n + 1} \right)jA] - n\exp ( - 2jA)}}{{{{{\left( {\exp ( - jA) - 1} \right)}}^{2}}}} - 4\frac{{\exp ( - njA) - \exp ( - jA)}}{{\exp ( - jA) - 1}}. \\ \end{gathered} $$
(C.3)

From expressions (C.1), (C.2) and (C.3), the modulating term \({{G}_{{{\text{mod}}}}}\left( f \right)\) can be expressed as

$$\begin{gathered} {{G}_{{{\text{mod}}}}}\left( f \right) = n + 8\cos \left[ {\left( {n - 1} \right)A} \right] \\ + \,\,\frac{{\left( {n - 5} \right)\exp (jA) - 3\exp [\left( {n + 1} \right)jA] - \left( {n - 4} \right)\exp (2jA) + 4\exp (njA)}}{{{{{\left( {\exp (jA) - 1} \right)}}^{2}}}} \\ + \,\,\frac{{\left( {n - 5} \right)\exp ( - jA) - 3\exp [ - \left( {n + 1} \right)jA] - \left( {n - 4} \right)\exp ( - 2jA) + 4\exp ( - njA)}}{{{{{\left( {\exp (jA) - 1} \right)}}^{2}}}}. \\ \end{gathered} $$
(C.4)

Again, simplifying expressions (C.4) using Euler’s formula yields

$${{G}_{{{\text{mod}}}}}\left( f \right) = \frac{\begin{gathered} 16n{{\sin }^{4}}\left( {\frac{A}{2}} \right) + 8\cos \left[ {\left( {n - 1} \right)A} \right]16{{\sin }^{4}}\left( {\frac{A}{2}} \right) \\ + \,\,2\left( \begin{gathered} - 8n{{\sin }^{4}}\left( {\frac{A}{2}} \right) + 4{{\sin }^{2}}\left( {\frac{A}{2}} \right) + 32{{\sin }^{4}}\left( {\frac{A}{2}} \right) \\ - 24{{\sin }^{3}}\left( {\frac{A}{2}} \right)\sin \left( {\frac{{2n - 1}}{2}A} \right) - 4{{\sin }^{2}}\left( {\frac{A}{2}} \right)\cos \left[ {\left( {n - 1} \right)A} \right] \\ \end{gathered} \right) \\ \end{gathered} }{{16{{{\sin }}^{4}}\left( {\frac{A}{2}} \right)}}$$
(C.5)

(C.5) can be further simplified as

$${{G}_{{{\text{mod}}}}}\left( f \right) = \frac{{16{{{\sin }}^{2}}\left( {\frac{A}{2}} \right)\cos \left[ {\left( {n - 1} \right)A} \right] + 1 + 8{{{\sin }}^{2}}\left( {\frac{A}{2}} \right) + 3\cos \left( {nA} \right) - 4\cos \left[ {\left( {n - 1} \right)A} \right]}}{{2{{{\sin }}^{2}}\left( {\frac{A}{2}} \right)}}.$$
(C.6)

D. Proof of Consistency of the Traditional and the Proposed GBOC Modulations

Defining \(A = \frac{{2\pi f}}{{n{{f}_{{\text{c}}}}}}\), expression (24) can be rewritten as

$${{G}_{{{\text{GBO}}{{{\text{C}}}_{{\cos }}}\left( {{{f}_{{\text{s}}}},{{f}_{{\text{c}}}}} \right)}}}\left( f \right) = \frac{{{{f}_{{\text{c}}}}}}{{{{{\left( {\pi f} \right)}}^{2}}}}\left\{ {{{{\sin }}^{2}}\left( {\frac{n}{2}A} \right) + 4{{{\sin }}^{2}}\left[ {\left( {\frac{{n - 2}}{n}} \right)A} \right] - 4\sin \left( {\frac{n}{2}A} \right)\sin \left[ {\left( {\frac{{n - 2}}{n}} \right)A} \right]} \right\}.$$
(D.1)

The trigonometric transformation of expression (D.1) yields

$${{G}_{{{\text{GBO}}{{{\text{C}}}_{{\cos }}}\left( {{{f}_{{\text{s}}}},{{f}_{{\text{c}}}}} \right)}}}\left( f \right) = \frac{{{{f}_{{\text{c}}}}}}{{{{{\left( {\pi f} \right)}}^{2}}}}\left\{ {\frac{1}{2} - \frac{1}{2}\cos \left( {nA} \right) + 2 - 2\cos \left[ {\left( {n - 2} \right)A} \right] + 2\cos \left[ {\left( {n - 1} \right)A} \right] - 2\cos \left( A \right)} \right\}.$$
(D.2)

Transforming expression (23) by trigonometric functions yields

$$\begin{gathered} {{G}_{{{\text{GBOC}}\left( {{{{\left\{ {{{s}_{i}}} \right\}}}_{{\chi = 2}}}{\text{, }}{{f}_{{\text{c}}}}} \right)}}}\left( f \right) = \frac{{{{f}_{{\text{c}}}}}}{{{{{\left( {\pi f} \right)}}^{2}}}}\frac{{\left\{ {16{{{\sin }}^{2}}\left( {\frac{n}{2}A} \right)\cos \left[ {\left( {n - 1} \right)A} \right] + 1 + 8{{{\sin }}^{2}}\left( {\frac{A}{2}} \right) + 3\cos \left( {nA} \right) - 4\cos \left[ {\left( {n - 1} \right)A} \right]} \right\}}}{2} \\ = \frac{{{{f}_{{\text{c}}}}}}{{{{{\left( {\pi f} \right)}}^{2}}}}\frac{{\left\{ {4\cos \left[ {\left( {n - 1} \right)A} \right] + 1 + 4 - 4\cos \left( A \right) + 3\cos \left( {nA} \right) - 8\cos \left( A \right)\cos \left[ {\left( {n - 1} \right)A} \right]} \right\}}}{2}\,. \\ \end{gathered} $$
(D.3)

Finally, the PSD of the proposed GBOC modulations is

$${{G}_{{{\text{GBOC}}\left( {{{{\left\{ {{{s}_{i}}} \right\}}}_{{\chi = 2}}}{\text{, }}{{f}_{{\text{c}}}}} \right)}}}\left( f \right) = \frac{{{{f}_{{\text{c}}}}}}{{{{{\left( {\pi f} \right)}}^{2}}}}\left\{ {\frac{1}{2} - \frac{1}{2}\cos \left( {nA} \right) + 2 - 2\cos \left[ {\left( {n - 2} \right)A} \right] + 2\cos \left[ {\left( {n - 1} \right)A} \right] - 2\cos \left( A \right)} \right\}.$$
(D.4)

Again, the expressions (D.2) and (D.4) are equivalent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Hu, Y. Generalized Modulation Scheme of GBOC for Global Navigation Satellite System. J. Commun. Technol. Electron. 66, 164–174 (2021). https://doi.org/10.1134/S1064226921020091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921020091

Navigation