Skip to main content
Log in

Multichannel Microwave Filtration with Dipole and Chiral Elements in a Meta-Interferometer with a Fabry–Perot Resonator

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

In this paper, a new application of dipole and chiral elements and structures based on them as one of the reflectors of a Fabry–Perot resonator located in the meta-interferometer is presented. It is experimentally shown that this application allows controlling multichannel microwave filtration in the range of 3–6 GHz. The influence of controlled resonance effects in the elements on the resonator spectrum and interferogram dynamics is demonstrated. The features related to the application of different elements and structures are studied: a “butterfly” dipole loaded with a varactor or stationary butterfly capacitor, a row of three single rings with two gaps loaded with two varactors, and arrays of spiral elements with 1.5 turns and double split rings. The theoretical study was carried out on an example of a meta-interferometer with a meta-structure in the form of a bianisotropic waveguide layer accounting for the possibility of implementing both direct wave and back wave modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Norwood, MA: Artech House, Norwood, MA (1994).

    Google Scholar 

  2. M. V. Kostin and V. V. Shevchenko, J. Commun. Technol. Electron. 43, 858 (1998).

    Google Scholar 

  3. D. R. Smith, W. J. Padilla, D. C. Vier, et al., Phys. Rev. Lett. 84 (18), 4184 (2000).

    Article  Google Scholar 

  4. J. Pendry, A. Holden, D. Robbins, and W. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).

    Article  Google Scholar 

  5. I. Gil, J. Garcia-Garcia, J. Bonache, et al., Electron. Lett. 40 (21), 1347 (2004).

    Article  Google Scholar 

  6. V. K. Varadan, V. V. Varadan, and A. Lakhtakia, J. Wave-Material Interaction 2, 71 (1987).

  7. C. F. Bohren, R. Luebbers, H. S. Langdon, and F. Hunsberger, Appl. Opt. 31 (30), 6403 (1992).

    Article  Google Scholar 

  8. S. A. Tretyakov, J. Opt. 19, 013002 (2017).

    Article  Google Scholar 

  9. R. Cameron, C. Kudsia, and R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications (Wiley, 2018).

    Book  Google Scholar 

  10. G. A. Kraftmakher, V. S. Butylkin, and Yu. N. Kazantsev, Tech. Phys. Lett. 39, 505 (2013)

    Article  Google Scholar 

  11. G. Kraftmakher, V. Butylkin, Y. Kazantsev, and V. Maltsev, Electron. Lett. 53 (18), 1264 (2017).

    Article  Google Scholar 

  12. J. V. Antonenko, A. V. Gribovsky, and I. K. Kuzmichev, Telecommun. & Radio Eng. 77, 1029 (2018).

    Article  Google Scholar 

  13. S. E. Bankov, M. D. Duplenkova, E. V. Frolova, Zh. Radioelektron., No. 7, 8 (2013). https://elibrary.ru/item.asp?id=20362390.

  14. J. Krupka, A. Cwikla, M. Mrozowski, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1443 (2005).

    Article  Google Scholar 

  15. Z. G. Liu, W. X. Zhang, D. L. Fu, et al., Microwave and Opt. Technol. Lett. 50, 1623 (2008).

    Article  Google Scholar 

  16. G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, and V. P. Mal’tsev, JETP Lett. 109, 232 (2019).

    Article  Google Scholar 

  17. G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, and V. P. Mal’tsev, J. Commun. Technol. Electron. 64, 1179 (2019).

    Article  Google Scholar 

  18. G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, et al., J. Commun. Technol. Electron. 66 (1), 1 (2021).

  19. G. A. Kraftmakher, V. S. Butylkin, Yu. N. Kazantsev, et al., Appl. Phys. A 123 (1), 56 (2017).

    Article  Google Scholar 

  20. J. M. Stone, Radiation and Optics: An Introduction to the Classical Theory (McGraw-Hill, New York, 1963).

    Google Scholar 

  21. L. A. Vainshtein, Electromagnetic Waves, 2nd ed. (Radio i Svyaz’, Moscow, 1988) [in Russian].

    Google Scholar 

  22. V. S. Butylkin and G. A. Kraftmakher, J. Commun. Technol. Electron. 53 (1), 1 (2008).

    Article  Google Scholar 

  23. R. Marqués and F. Medina, R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002).

    Article  Google Scholar 

  24. B. Sauviac, C. Simovski, and S. Tretyakov, Electromagnetics 24 (5), 317 (2004).

    Article  Google Scholar 

  25. V. S. Butylkin and G. A. Kraftmakher, J. Commun. Technol. Electron. 51, 484 (2006).

    Article  Google Scholar 

  26. C. R. Simovski, P. A. Belov, and S. He, IEEE Trans. Antennas Propag. 51, 2582 (2003).

    Article  Google Scholar 

  27. V. S. Butylkin and G. A. Kraftmakher, J. Commun. Technol. Electron. 53, 758 (2008).

    Article  Google Scholar 

  28. V. V. Shevchenko, Usp. Fiz. Nauk 177, 301 (2007).

    Article  Google Scholar 

  29. K. Aydin and E. Ozbay, J. Appl. Phys. 101, 024911 (2007).

    Article  Google Scholar 

  30. D. Kholodnyak, E. Serebryakova, I. Vendik, and O. Vendik, IEEE Microw. Wireless Comp. Lett. 16, 258 (2006).

    Article  Google Scholar 

  31. S. E. Bankov, Electromagnetic Crystals (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

Download references

Funding

The study was carried out within a state assignment to the Institute of Radio-Engineering and Electronics, Russian Academy of Science, project no. 0030-2019-0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Kraftmakher.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraftmakher, G.A., Butylkin, V.S., Kazantsev, Y.N. et al. Multichannel Microwave Filtration with Dipole and Chiral Elements in a Meta-Interferometer with a Fabry–Perot Resonator. J. Commun. Technol. Electron. 66, 101–117 (2021). https://doi.org/10.1134/S1064226921020078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921020078

Navigation