Skip to main content
Log in

Resonator Module for a Laser on the Effect of Stimulated Raman Scattering on a Diamond Single Crystal

  • NOVEL RADIO SYSTEMS AND ELEMENTS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract—The design features of the resonator module of a laser based on the effect of stimulated Raman scattering (SRS) on a single crystal of diamond grown by the chemical vapor deposition (CVD) method pumped by a nanosecond Nd:YAG laser. The performance of the developed structure on a CVD diamond has been checked and on a test SRS calcite crystal (CaCO3); Raman lasers based on both crystals were pumped using radiation with λ = 532 nm. SRS lasing was obtained, the wavelengths of Stokes components and the SRS gains of CVD diamond and calcite were measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. G. Dmitriev and L. V. Tarasov, Applied Nonlinear Optics (Radio i Svyaz’, Moscow, 1982) [in Russian].

    Google Scholar 

  2. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984; Nauka, Moscow, 1989).

  3. T. T. Basiev, Phys. Solid State 47, 1400 (2005).

    Article  Google Scholar 

  4. N. Blombergen, Usp. Fiz. Nauk 97, 307 (1969).

    Article  Google Scholar 

  5. T. T. Basiev, Usp. Fiz. Nauk 169, 1149 (1999).

    Article  Google Scholar 

  6. G. Eckhardt, D. Bortfeld, and M. Geller, Appl. Phys. Lett. 3 (8), 137 (1963).

    Article  Google Scholar 

  7. G. Eckhardt, IEEE J. Quantum Electron. 2 (1), 1 (1966).

    Article  Google Scholar 

  8. A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, Phys. Rev. A 1, 628 (1970).

    Article  Google Scholar 

  9. Carbon Photonics, Ed. by V. I. Konov (Nauka, Moscow, 2017) [in Russian].

    Google Scholar 

  10. Natural Diamond of Russia, Ed. by V. B. Kvaskov (Polyaron, Moscow, 1997) [in Russian].

    Google Scholar 

  11. B. V. Spitsyn and B. V. Deryagin, “Diamond face extension method,” Patent No. 339134, Byull. Izobr., No. 17, 323 (1980).

  12. V. E. Rogalin, M. I. Krymskii, and K. M. Krymskii, J. Commun. Technol. Electron. 63, 1326 (2018).

    Article  Google Scholar 

  13. V. E. Rogalin and S. M. Aranchii, Integral, No. 5, 80 (2012).

  14. S. M. Aranchii, K. M. Krymskii, M. I. Krymskii, and V. E. Rogalin, J. Commun. Technol. Electron. 60, 308 (2015).

    Article  Google Scholar 

  15. N. Lawandy and R. Afzal, “Solid state diamond Raman laser,” U. S. Patent, Application, No. 20050163169 A1 (Jul. 2005).

  16. A. A. Kaminskii, V. G. Ralchenko, V. I. Konov, and H. J. Eichler, Phys. Stat. Sol. B 242 (1), R4 (2005).

    Article  Google Scholar 

  17. A. A. Kaminskii, R. J. Hemley, J. Lai, et al., Laser Phys. Lett. 4, 350 (2007).

    Article  Google Scholar 

  18. E. Granados, D. J. Spence, and R. P. Mildren, Opt. Express 19 (11), 10857 (2011).

    Article  Google Scholar 

  19. R. P. Mildren, J. E. Butler, and J. R. Rabeau, Opt. Express 16 (23), 18950 (2008).

    Article  Google Scholar 

  20. A. Sabella, J. A. Piper, and R. P. Mildren, Opt. Express 19 (23), 23554 (2011).

    Article  Google Scholar 

  21. R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, Opt. Lett. 39 (14), 4152 (2014).

    Article  Google Scholar 

  22. O. Kitzler, J. Lin, H. M. Pask, et al., Opt. Lett. 42, 1229 (2017).

    Article  Google Scholar 

  23. R. J. Williams, O. Kitzler, Z. Bai, et al., IEEE J. Selected Topics Quantum Electron. 24 (5), 1602214 (2018).

    Google Scholar 

  24. Z. Bai, R. J. Williams, O. Kitzler, et al., Opt. Express 26 (16), 19797 (2018).

    Article  Google Scholar 

  25. S. Antipov, A. Sabella, R. J. Williams, et al., Opt. Lett. 44, 2506 (2019).

    Article  Google Scholar 

  26. R. P. Mildren and J. R. Rabeau, (Eds) Optical Engineering of Diamond (Wiley-VCH, Weinheim, 2013).

    Google Scholar 

  27. A. A. Kaminskii, V. G. Ral’chenko, H. Yoneda, A. P. Bol’shakov, and A. V. Inyushkin, JETP Lett. 104, 347 (2016).

    Article  Google Scholar 

  28. N. P. Andreeva, M. S. Barashkov, V. L. Evstigneev, et al., Konenant 16, 88 (2018).

    Google Scholar 

  29. D. B. Kolker, R. V. Pustovalova, M. K. Starikova, et al., Prib. & Tekh. Exp., No. 2, 124 (2012).

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.Yu. Loktionov for help in the study, as well as to the Specialized Interdepartmental Educational-Testing Laboratory of Semiconductor Materials and Dielectrics, “Single Crystals and Blanks Based on Them” for measurements of reflectivity and transmission of mirrors.

Funding

The study was carried out as part of a federal target project of the program “Research and Development in Priority Areas of Development of the Scientific and Technological Complex of Russia for 2014–2020 on the topic Development of Technology and Equipment for Obtaining Ultrapure Single Crystals of Diamond by the CVD method and their Alloying Processes for Use in Photonics and in Microelectronics in the Form of High-Temperature Semiconductors (Subsidy Agreement No. 075-02-2018-210 dated November 26, 2018, unique identifier RFMEFI57818X0266) and was supported by the Ministry of Science and Higher Education of the Russian Federation (topic—applied research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Rogalin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, M.S., Artyushkin, N.V., Krymsky, K.M. et al. Resonator Module for a Laser on the Effect of Stimulated Raman Scattering on a Diamond Single Crystal. J. Commun. Technol. Electron. 66, 220–225 (2021). https://doi.org/10.1134/S1064226921020017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921020017

Navigation