Skip to main content
Log in

Nonlinear Elastic Waves in Magnetically Ordered Crystals in the Vicinity of Orientational Phase Transitions

  • RADIO PHENOMENA IN SOLIDS AND PLASMA
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A phase diagram of the dynamic magnetoelastic states of an easy-plane antiferromagnet is constructed. A dispersion relation is obtained for nonlinear magnetoelastic eigenwaves. It is shown that, at the point of the orientational phase transition, the dispersion of coupled spin and elastic waves depends only on wave amplitudes and parameters of magnetoelastic coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. E. A. Turov and Yu. P. Irkhin, Fiz. Met. Metalloved. (FMM) 3, 15 (1956).

    Google Scholar 

  2. A. I. Akhiezer, V. G. Bar’yakhtar, S. V. Peletminskii, J. Exp. Theor. Phys. 35, 228 (1958).

    Google Scholar 

  3. C. Kittel, Phys. Rev. 110, 836 (1958).

  4. E. G. Spencer and R. Le Craw, Phys. Rev. Lett. 1, 241 (1958).

    Article  Google Scholar 

  5. H. Matthews and R. Le Craw, Phys. Rev. Lett. 8, 397 (1962).

    Article  Google Scholar 

  6. B. Lüthi, Phys. Lett. A 3 (6), 285 (1963).

    Article  Google Scholar 

  7. E. G. Rudashevsky and T. A. Shalnikova, in Proc. 3rd Reg. Conf. on Physics and Techniques of Low Temperatures. Sept., Prague, 1963 (Verlag, Prague, 1964), p. 84.

  8. A. Tasaki and S. Iida, J. Phys. Soc. Jpn. 18, 1148 (1963).

    Article  Google Scholar 

  9. A. S. Borovik-Romanov and E. G. Rudashevskii, J. Exp. Theor. Phys. 47, 2095 (1964).

    Google Scholar 

  10. E. A. Turov and V. G. Shavrov, Fiz. Tverd. Tela (Leningrad) 7, 217 (1965).

    Google Scholar 

  11. E. A. Turov and V. G. Shavrov, Usp. Fiz. Nauk 140, 429 (1983).

    Article  Google Scholar 

  12. V. I. Sheglov, Fiz. Tverd. Tela (Leningrad) 14, 2180 (1972).

    Google Scholar 

  13. M. H. Seavay, Solid State Commun. 10 (2), 219 (1972).

    Article  Google Scholar 

  14. P. P. Maksimenkov and V. I. Ozhogin, J. Exp. Theor. Phys. 65, 657 (1973).

    Google Scholar 

  15. I. E. Dikshtein, V. V. Tarasenko, and V. G. Shavrov, J. Exp. Theor. Phys. 67, 816 (1975).

    Google Scholar 

  16. I. E. Dikshtein, V. V. Tarasenko, and V. G. Shavrov, Fiz. Tverd. Tela (Leningrad) 19, 1107 (1977).

    Google Scholar 

  17. S. A. Migachev, Kh. G. Bogdanova, and M. I. Kurkin, Phys. Solid State 57, 38 (2015).

    Article  Google Scholar 

  18. V. I. Ozhogin and A. Yu. Lebedev, J. Magn. Magn. Mater. 1518, 617 (1980).

    Article  Google Scholar 

  19. S. K. Turitsyn and G. E. Fal’kovich, Zh. Eksp. Teor. Fiz. 89, 258 (1985).

    Google Scholar 

  20. A. F. Kabychenkov and V. G. Shavrov, Zh. Eksp. Teor. Fiz. 95, 580 (1989).

    Google Scholar 

  21. V. V. Kiselev and A. P. Tankeev, Fiz. Met. Metalloved. (FMM) 75, 40 (1993).

    Google Scholar 

  22. M. A. Shamsutdinov, A. T. Kharisov, and A. P. Tankeev, Fiz. Met. Metalloved. 85, 43 (1998).

    Google Scholar 

  23. A. T. Kharisov, M. A. Shamsutdinov, and A. P. Tankeev, Fiz. Met. Metalloved. 87, 5 (1999).

    Google Scholar 

  24. A. Ekpekpo, Int. J. Rec. Res. & Appl. Studies (IJRRAS) 6, 449 (2011).

    MathSciNet  Google Scholar 

  25. A. F. Kabychenkov, V. G. Shavrov, and A. L. Shevchenko, Fiz. Tverd. Tela (Leningrad) 32, 2010 (1990).

    Google Scholar 

  26. V. I. Ozhogin and V. L. Preobrazhenskii, Usp. Fiz. Nauk 155, 593 (1988).

    Article  Google Scholar 

  27. V. I. Ozhogin and V. L. Preobrazhenskii, Zh. Eksp. Teor. Fiz. 73, 988 (1977).

    Google Scholar 

  28. A. F. Kabychenkov and V. G. Shavrov, Fiz. Tverd. Tela (Leningrad) 28, 433 (1986).

    Google Scholar 

  29. A. F. Kabychenkov and V. G. Shavrov, Fiz. Tverd. Tela (Leningrad) 29, 202 (1987).

    Google Scholar 

  30. M. V. Chetkin and V. V. Lykov, Pis’ma Zh. Eksp. Teor. Fiz. 52, 863 (1990).

    Google Scholar 

  31. A. F. Kabychenkov, V. G. Shavrov, and A. L. Shevchenko, Fiz. Tverd. Tela (Leningrad) 31, 193 (1989).

    Google Scholar 

  32. A. F. Kabychenkov, V. G. Shavrov, and A. L. Shevchenko, Fiz. Tverd. Tela (Leningrad) 32,1182 (1990).

    Google Scholar 

  33. N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  34. A. A. Bogush and L. G. Moroz, Introduction to the Theory of Classical Field (URSS, Moscow, 2004) [in Russian].

    Google Scholar 

  35. K. B. Vlasov and B. Kh. Ishmukhametov, Zh. Eksp. Teor. Fiz. 46, 201 (1964).

    Google Scholar 

  36. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 2: Special Functions (Nauka, Moscow, 2003; Gordon and Breach, New York, 1986).

  37. D. N. Klyshko, Physical Principles of Quantum Electronics (Nauka, Moscow, 1986) [in Russian].

    MATH  Google Scholar 

  38. A. F. Kabychenkov, Phys. Solid State 48, 516 (2006).

    Article  Google Scholar 

Download references

Funding

This work was supported by the State Contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Lisovskii.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabychenkov, A.F., Lisovskii, F.V. Nonlinear Elastic Waves in Magnetically Ordered Crystals in the Vicinity of Orientational Phase Transitions. J. Commun. Technol. Electron. 66, 76–87 (2021). https://doi.org/10.1134/S1064226921010034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921010034

Navigation