Skip to main content
Log in

Activation of Nanocomposite Liposomal Capsules in a Conductive Water Medium by Ultra-Short Electric Exposure

  • APPLICATIONS OF RADIOTECHNOLOGY AND ELECTRONICS IN BIOLOGY AND MEDICINE
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

In a system that simulates aquatic biological media, the possibility of activating nanocomposite liposomal capsules (NLCs) containing spherical electrically conductive nanoparticles on the outer and inner surfaces of the liposomal membrane, using an external ultrashort electric action, has been shown. The decapsulation effect was registrated by fluorimetry methods. The key role of conducting nanoparticles in increasing the sensitivity of NLCs to external ultrashort electrical impact is shown. A theoretical model of nonthermal interaction of NLCs with ultrashort electric pulses is constructed, within the frame of which an expression is obtained for the critical value of the electric field strength, which determines the threshold for the appearance of the decapsulation effect in a conducting medium. The described mechanism of decapsulation explains the selective nature of ultrashort pulsed electrical impact on the NLCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Svenson and R. K. Prud’homme, Multifunctional Nanoparticles for Drug Delivery Applications: Imaging, Targeting and Delivery Series, Ed. by S. Svenson and R. K. Prud, (Springer-Verlag, New York, 2012).

    Book  Google Scholar 

  2. S. Parveen, R. Misra, and S. K. Sahoo, Nanomed.-Nanotechnol. Biol. Med. 8 (2), 147 (2012).

    Article  Google Scholar 

  3. N. Nasongkla, E. Bey, J. Ren, et al., Nano Lett. 6, 2427 (2006).

    Article  Google Scholar 

  4. A. Z. Wang, R. Langer, and O. C. Farokhzad, Ann. Rev. Med. 63, 185 (2012).

    Article  Google Scholar 

  5. N. Pandey and K. Mahara, Pharma Tutor 5 (10), 48 (2017).

    Google Scholar 

  6. D. Tomalia, H. Baker, J. Dewald, et al., Polym. J. 17 (1), 117 (1985).

    Article  Google Scholar 

  7. T. Garg, O. Singh, S. Arora, and R. Murthy, Int. J. Pharmaceutical Sci. Rev. Res. 7 (2), 211 (2011).

    Google Scholar 

  8. Z. Zhang, P. C. Tsai, T. Ramezanli, and B. B. Michniak-Kohn, Wiley Interdiscipl. Rev.: Nanomed. & Nanobiotechnol. 5 (3), 205 (2013).

    Article  Google Scholar 

  9. E. Calzoni, A. Cesaretti, A. Polchi, et al., J. Funct. Biomater. 10, 1001004 (2019).

    Article  Google Scholar 

  10. K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni, and W. E. Rudzinski, J. Controlled Release 70, 1 (2000).

    Article  Google Scholar 

  11. R. Narayanaswamy and V. P. Torchilin, Molecules 24, 603 (2019).

    Article  Google Scholar 

  12. S. L. Bennett, D. A. Melanson, D. F. Torchiana, and D. M. Wiseman, J. Cardiac Surgery 18, 494 (2003).

    Article  Google Scholar 

  13. H. J. Van der Linden, S. Herber, W. Olthuis, and P. Bergveld, Analyst. Feb. 128, 325 (2003).

  14. Y. Sung and S. Kim, Biomater. Res. 23, 85 (2019).

    Article  Google Scholar 

  15. E. Elizondo, E. Moreno, I. Cabrera, et al., Prog. Mol. Biol. Transl. Sci. 104, 1 (2011).

    Article  Google Scholar 

  16. P. I. Campbell, Cytobios 37, 21 (1983).

    Google Scholar 

  17. D. Lombardo, M. A. Kiselev, and M. T. Caccamo, J. Nanomater., No. 12, 1 (2019).

  18. E. Donath, G. B. Sukhorukov, F. Caruso, et al., Angew. Chem. Int. Ed. Engl. 37 (16), 2202 (1998).

    Article  Google Scholar 

  19. G. B. Sukhorukov, E. Donath, S. A. Davis, et al., Polym. Adv. Technol. 9, 759 (1998).

    Article  Google Scholar 

  20. G. B. Sukhorukov, A. Antipov, A. Voigt, et al., Macromol. Rapid Commun. 22 (1), 44 (2001).

    Article  Google Scholar 

  21. G. B. Khomutov, V. P. Kim, K. V. Potapenkov, et al., Colloids and Surfaces A: Physicochem. Eng. Aspects 532, 150 (2017).

    Article  Google Scholar 

  22. B. Radt, T. A. Smith, and F. Caruso, Adv. Mater. 16 (23–24), 2184 (2004).

    Article  Google Scholar 

  23. Z. Lu, M. D. Prouty, Z. Guo, et al., Langmuir 21, 2042 (2005).

    Article  Google Scholar 

  24. D. A. Gorin, D. G. Shchukin, A. I. Mikhailov, K. Kohler, S. A. Sergeev, S. A. Portnov, I. V. Taranov, V. V. Kislov, and G. B. Sukhorukov, Tech. Phys. Lett. 32, 70 (2006).

    Article  Google Scholar 

  25. D. A. Gorin, D. G. Shchukin, Yu. A. Koksharov, et al., Progress in Biomed. Opt. Imag. 6536, 653604 (2007).

    Google Scholar 

  26. Yu. V. Gulyaev, V. A. Cherepenin, V. A. Vdovin, I. V. Taranov, G. B. Sukhorukov, D. A. Gorin, and G. B. Khomutov, J. Commun. Technol. Electron. 60, 1286 (2015).

    Article  Google Scholar 

  27. R. A. Schwendener, Bio-Applications of Nanoparticles, Ed. by W. C. W. Chan, (Springer Publ. Inc, New York, 2007), p. 117.

    Google Scholar 

  28. E. Amstad, J. Kohlbrecher, E. Muller, et al., Nano Lett. 11, 1664 (2011).

    Article  Google Scholar 

  29. Yu. V. Gulyaev, V. A. Cherepenin, V. A. Vdovin, I. V. Taranov, A. A. Yaroslavov, V. P. Kim, and G. B. Khomutov, J. Commun. Technol. Electron. 60, 1097 (2015).

    Article  Google Scholar 

  30. Yu. V. Gulyaev, V. A. Cherepenin, I. V. Taranov, V. A. Vdovin, and G. B. Khomutov, J. Commun. Technol. Electron. 65, 193 (2020).

    Article  Google Scholar 

  31. Yu. V. Gulyaev, V. A. Cherepenin, I. V. Taranov, V. A. Vdovin, A. A. Yaroslavov, V. P. Kim, and G. B. Khomutov, J. Commun. Technol. Electron. 61, 56 (2016).

    Article  Google Scholar 

  32. G. B. Khomutov, V. P. Kim, Y. A. Koksharov, et al., Coll. Surfaces A: Physicochem. Eng. Aspects 532, 26 (2017).

    Article  Google Scholar 

  33. S. P. Gubin, Yu. V. Gulyaev, G. B. Khomutov, et al., Nanotechnol. 13 (2), 185 (2002).

    Article  Google Scholar 

  34. V. V. Kislov, V. V. Kolesov, and I. V. Taranov, J. Commun. Technol. Electron. 47, 1266 (2002).

    Google Scholar 

  35. V. V. Kislov, Yu. V. Gulyaev, V. V. Kolesov, et al., Int. J. Nanosci. 3 (1–2), 137 (2004).

    Article  Google Scholar 

  36. V. Kislov, B. Medvedev, and Yu. Gulyaev, et al., Int. J. Nanosci. 6, 373 (2007).

    Article  Google Scholar 

  37. M. A. Kozhushner, A. K. Gatin, M. V. Grishin, B. R. Shub, V. P. Kim, G. B. Khomutov, and L. I. Trakhtenberg, Phys. Solid State 58, 266 (2016).

    Article  Google Scholar 

  38. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media (Nauka, Moscow, 2003; Pergamon, Oxford, 1984).

  39. H. P. Schwan, Biological Effects and Dosimetry of Nonionizing Radiation, Ed. by M. Grandolfo, S. M. Michaelson, A. Rindi (Plenum Press, New York, 1983).

    Google Scholar 

  40. V. P. Kim, A. M. Ermakov, E. G. Glukhovskoii, et al., Ros. Nanotekhnol. 9 (5–6), 47 (2014).

    Google Scholar 

Download references

Funding

This study was carried out as a part of state assignment (number AAAA-A19-119041590070-1) and with partial financial support from the Russian Foundation for Basic Research (project No. 18-29-02080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Taranov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulyaev, Y.V., Cherepenin, V.A., Taranov, I.V. et al. Activation of Nanocomposite Liposomal Capsules in a Conductive Water Medium by Ultra-Short Electric Exposure. J. Commun. Technol. Electron. 66, 88–95 (2021). https://doi.org/10.1134/S1064226921010022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921010022

Navigation