Skip to main content
Log in

Study of Spatial Distribution of Piezoelectric Properties of ZnO Films by Acoustic Resonator Spectroscopy

  • PHYSICAL PROCESSES IN ELECTRON DEVICES
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Using broadband acoustic resonator spectroscopy, an almost twofold increase in the frequency of optimal excitation of the composite microwave resonator of shear bulk acoustic waves is found when the distance from the substrate to the magnetron axis during the deposition of a ZnO film by magnetron sputtering is changed. The frequency characteristics of the resonator structure are simulated and an explanation of the change in the optimal excitation frequency by the inhomogeneity of the inclination of the ZnO film texture’s axis over the thickness is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. Ruby, in Proc. 2017 IEEE 30th Int. Conf. on Micro Electro Mechanical Systems (MEMS), Las Vegas, Nov. 22–26, 2017 (IEEE, New York, 2017), p. 308.

  2. C. C. W. Ruppel, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64, 1390 (2017).

    Article  Google Scholar 

  3. D. Rabus, J. M. Friedt, S. Ballandras, et al., J. Appl. Phys. 118, 114505 (2015).

    Article  Google Scholar 

  4. S. K. Arya, S. Saha, J. E. Ramirez-Vick, et al., Anal. Chim. Acta 737, 1 (2012).

    Article  Google Scholar 

  5. V. J. Gokhale, B. P. Downey, D. S. Katzer, et al., Nature Commun. 11, 2314 (2020).

    Article  Google Scholar 

  6. P. Delsing, A. N. Cleland, M. J. A. Schuetz, et al., J. Phys. D: Appl. Phys. 52, 353001 (2019).

    Article  Google Scholar 

  7. B. P. Sorokin, A. S. Novoselov, G. M. Kvashnin, N. V. Luparev, N. O. Asafiev, A. B. Shipilov, and V. V. Aksenenkov, Acoust. Phys. 65, 263 (2019).

    Article  Google Scholar 

  8. N. F. Foster, G. A. Coquin, G. A. Rozgonyi, and F. A. Vanatta, IEEE Trans. Sonics Ultrason. 15, 28 (1968).

    Article  Google Scholar 

  9. N. I. Polzikova, S. G. Alekseev, I. I. Pyataikin, et al., AIP Adv. 8, 056128 (2018).

    Article  Google Scholar 

  10. N. I. Polzikova, S. G. Alekseev, V. A. Luzanov and A. O. Raevskiy, Phys. Solid State 62, 2211 (2018).

    Article  Google Scholar 

  11. S. G. Alekseev, N. I. Polzikova, and A. O. Raevskiy, J. Commun. Technol. Electron 64, 1318 (2019).

    Article  Google Scholar 

  12. N. I. Polzikova, S. G. Alekseev, V. A. Luzanov, and A. O. Raevskiy, J. Magn. Magn. Mater. 479, 38 (2019).

    Article  Google Scholar 

  13. G. Rughoobur, M. De Miguel-Ramos, T. Mirea, et al., Appl. Phys. Lett. 108, 034103 (2016).

    Article  Google Scholar 

  14. A. G. Veselov, V. I. Elmanov, O. A. Kiryasova and Yu. V. Nikulin, Tech. Phys. 64, 730 (2019).

    Article  Google Scholar 

  15. I. M. Kotelyanskii, A. I. Krikunov, V. A. Luzanov, et al., “Method of applying piezoelectric zinc oxide films in vacuum,” Certificate of Authorship SSSR, No. 1394742 A 1, Byull. Izobret., No. 45 (1992).

  16. V. A. Luzanov, J. Commun. Technol. Electron. 62, 1182 (2017).

    Article  Google Scholar 

  17. V. A. Luzanov, S. G. Alekseev, and N. I. Polzikova, J. Commun. Technol. Electron. 63, 1076 (2018).

    Article  Google Scholar 

  18. S. G. Alekseev, I. M. Kotelyanskii, N. I. Polzikova, and G. D. Mansfel’d, J. Commun. Technol. Electron. 60, 300 (2015).

    Article  Google Scholar 

  19. J. D. N. Cheeke, Y. Zhang, Z. Wang, et al., in Proc. 1998 IEEE Ultrasonics Symp., Sendai, Oct. 5–8, 1998 (IEEE, New York, 1998), Vol. 2, p. 1125.

  20. H. Nowotny and E. Benes, J. Acoust. Soc. Am. 82, 513 (1987).

    Article  Google Scholar 

  21. S. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing (Prentice-Hall, Englewood Cliffs, N. J., 1987; Mir, Moscow, 1990).

  22. R. Truell, C. Elbaum, and B. B. Chick, Ultrasonic Methods in Solid State Physics (Academic, New York and London, 1969; Mir, Moscow, 1972).

  23. S. G. Alekseev, G. D. Mansfeld, and N. I. Polzikova, J. Commun. Technol. Electron. 51, 925 (2006).

    Article  Google Scholar 

Download references

Funding

The study was performed as part of a state assignment and partly with the financial support of the Russian Foundation for Basic Research (project no. 20-07-01075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Alekseev.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, S.G., Luzanov, V.A. & Polzikova, N.I. Study of Spatial Distribution of Piezoelectric Properties of ZnO Films by Acoustic Resonator Spectroscopy. J. Commun. Technol. Electron. 65, 1339–1344 (2020). https://doi.org/10.1134/S1064226920110017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920110017

Navigation