Skip to main content
Log in

Application of a Microwave Coaxial Bragg Structure for the Measurement of Parameters of Insulators

  • RADIO PHENOMENA IN SOLIDS AND PLASMA
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A method for the measurement of the complex permittivity of insulators using a microwave coaxial photonic crystal is proposed and implemented. The method is based on a solution to an inverse problem using minimization of the difference of experimental and calculated frequency dependences of the transmission and reflection coefficients at the defect-mode frequency in the band gap of a photonic microwave crystal containing a structure with the parameters that must be determined. An unambiguous solution to the inverse problem can be obtained using a defect mode in the band gap at the frequency of which a maximum of the standing wave is obtained in the region of the structure under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. D. A. Usanov, S. A. Nikitov, A. V. Skripal’, and D. V. Ponomarev, 1D Microwave Photonic Crystals: New Applications (Fizmatlit, Moscow, 2018) [in Russian].

    MATH  Google Scholar 

  2. B. A. Belyaev, S. A. Khodenkov, and V. F. Shabanov, Dokl. Phys. 61, 155 (2016).

    Article  Google Scholar 

  3. A. Gomez, A. Vegas, M. A. Solano, and A. Lakhtakia, Electromagnetics 25, 437 (2005).

    Article  Google Scholar 

  4. V. M. Mukhortov, S. I. Masychev, A. A. Mamatov, and Vas. M. Mukhortov, Tech. Phys. Lett. 39, 921 (2013).

    Article  Google Scholar 

  5. D. A. Usanov, A. V. Skripal, A. V. Abramov, A. S. Bogolyubov, M. Yu. Kulikov, and D. V. Ponomarev, Tech. Phys. 80, 1216 (2010).

    Article  Google Scholar 

  6. Al. A. Nikitin, An. A. Nikitin, A. B. Ustinov, E. Lahderanta, and B. A. Kalinikos, Tech. Phys. 86, 913 (2016).

  7. D. A. Usanov, S. A. Nikitov, A. V. Skripal’, and D. S. Ryazanov, J. Commun. Technol. Electron. 61, 379 (2016).

    Article  Google Scholar 

  8. D. A. Usanov, S. A. Nikitov, A. V. Skripal’, M. K. Merdanov, and S. G. Evteev, J. Commun. Technol. Electron. 63, 58 (2018).

    Article  Google Scholar 

  9. R. D. Pradhan and G. H. Watson, Phys. Rev. B 60 (4), 2410 (1999).

    Article  Google Scholar 

  10. G. J. Schneider, S. Hanna, J. L. Davis, and G. H. Watson, J. Appl. Phys. 90, 2642 (2001).

    Article  Google Scholar 

  11. Wei Tao, Wu Songping, Huang Jie, et al., Appl. Phys. Lett. 99, 113517 (2011).

    Article  Google Scholar 

  12. Huang Jie, in Proc. Conf. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, California, March 11–15,2012 (SPIE Press, Bellingham, 2012), Vol. 8345, p. 83452Z-1.

  13. A. R. Nasybullin, O. G. Morozov, and A. A. Sevast’aynov, J. Radioelektron., No. 3, 1 (2014). http://jre.cplire.ru/jre/contents.html.

  14. G. A. Morozov, O. G. Morozov, A. R. Nasybullin, et al., Fiz. Voln. Prots. & Radiotekh. Sist. 17 (3), 65 (2014).

    Google Scholar 

  15. S. L. Stevan, Jr., J. J. A. Mendes, Jr., F. C. Janzen, et al., J. Microwaves, Optoelectron. & Electromag. Appl. 14 (1), 28 (2015).

    Article  Google Scholar 

  16. S. A. Nikitov, Yu. V. Gulyaev, D. A. Usanov, A. V. Skripal’, and D. V. Ponomarev, Dokl. Phys. 58, 6 (2013).

    Article  Google Scholar 

  17. D. A. Usanov, S. A. Nikitov, A. V. Skripal’, D. V. Ponomarev, and E. V. Latysheva, J. Commun. Technol. Electron. 61, 42 (2016).

    Article  Google Scholar 

  18. D. M. Sazonov, Microwave Circuits and Antennas (Vysshaya Shkola, Moscow, 1988; Mir, Moscow, 1990).

  19. A. L. Fel’dshtein, L. R. Yavich, and V. P. Smirnov, Components of Waveguide Technology: A Handbook (Sovetskoe Radio, Moscow, 1967) [in Russian].

    Google Scholar 

  20. E. Ozbay, B. Temelkuran, and M. Bayindir, Prog. Electromag. Res. 41, 185 (2003).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of Russia in the framework of the state task (project FSRR-2020-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Skripal’.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usanov, D.A., Nikitov, S.A., Skripal’, A.V. et al. Application of a Microwave Coaxial Bragg Structure for the Measurement of Parameters of Insulators. J. Commun. Technol. Electron. 65, 541–548 (2020). https://doi.org/10.1134/S1064226920040087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920040087

Navigation