Skip to main content
Log in

The Influence of Strains on the Ferromagnetic Resonance Spectrum of Submicron Yttrium Iron Garnet Films Obtained by Ion Beam Sputtering

  • RADIO PHENOMENA IN SOLIDS AND PLASMA
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The influence of strains on the ferromagnetic resonance (FMR) spectrum of submicron yttrium iron garnet (YIG) films produced by the ion beam sputtering on gadolinium-gallium garnet (GGG) and silicon (Si) substrates is explored. It is shown that the strain influence is displayed as a frequency shift of the absorption maximum in the FMR spectrum. The results indicate that the studied YIG/GGG and YIG/Si films have an efficient magnetoelastic coupling of the spin and elastic subsystems, which suggests that ion beam sputtering of YIG films on GGG and Si substructures can be a promising technique for production of straintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. A. Bukharaev, A. K. Zvezdin, A. P. Pyatakov, and Yu. K. Fetisov, Usp. Fiz. Nauk. 188, 1288 (2018).

    Article  Google Scholar 

  2. S. A. Nikitov, D. V. Kalyabin, I. V. Lisenkov, et al., Usp. Fiz. Nauk. 185, 1099 (2015).

    Article  Google Scholar 

  3. C.-W. Nan, M. I. Bichurin, S. Dong, et al., J. Appl. Phys. 103, 031101 (2008).

    Article  Google Scholar 

  4. B. Behin-Aein, S. Salahuddin, and S. Datta, IEEE Trans. Nanotechnol. 8, 505 (2009).

    Article  Google Scholar 

  5. K. Roy, S. Bandyopadhyay, and J. Atulasimha, Appl. Phys. Lett. 99, 063108 (2011).

    Article  Google Scholar 

  6. K. Roy, S. Bandyopadhyay, and J. Atulasimha, J. Appl. Phys. 112, 023914 (2012).

    Article  Google Scholar 

  7. K. Miura, S. Yabuuchi, M. Yamada, et al., Sci. Rep. 7, 42511 (2017).

    Article  Google Scholar 

  8. A. Klimov, N. Tiercelin, Y. Dusch, et al., Appl. Phys. Lett. 110, 401 (2017).

    Article  Google Scholar 

  9. P. A. Dowben, C. Binek, et al., IEEE J. Exploratory Solid-State Comput. Devices & Circuits 4 (1), 1 (2018).

    Google Scholar 

  10. J. Zhai, Z. Xing, S. Dong, et al., Appl. Phys. Lett. 88, 062510 (2006).

    Article  Google Scholar 

  11. X. Hu Wang, T. Nan, Z. Zhou, et al., Sci. Rep. 6, 32408 (2016).

    Article  Google Scholar 

  12. R. Verba, M. Carpentier, G. Finocchio, et al., Sci. Rep. 6, 25018 (2016).

    Article  Google Scholar 

  13. T. Nozaki, Y. Shiota, S. Miwa, et al., Nature Phys. 8, 491 (2012).

    Article  Google Scholar 

  14. F. Chen, X. Wang, Y. Nie, et al., Sci. Rep. 6, 28206 (2016).

    Article  Google Scholar 

  15. S. Kanai, M. Gajek, and D. C. Worledge, Appl. Phys. Lett. 105, 242409 (2014).

    Article  Google Scholar 

  16. M. Balinskiy, A. C. Chavez, and A. Barra, Sci. Rep. 8, 10867 (2018).

    Article  Google Scholar 

  17. Y. K. Fetisov and G. Srinivasan, Appl. Phys. Lett. 88, 143503 (2006).

    Article  Google Scholar 

  18. G. Srinivasan, A. S. Tatarenko, Y. K. Fetisov, et al., Mater. Res. Soc. Symp. Proc. 966, 0966-T14 (2007).

  19. Y. K. Fetisov and G. Srinivasan, Appl. Phys. Lett. 87, 103502 (2005).

    Article  Google Scholar 

  20. A. B. Ustimov, G. Srinivasan, and B. A. Kalinikos, Appl. Phys. Lett. 90, 031913 (2007).

    Article  Google Scholar 

  21. I. V. Zavislyak, M. A. Popov, G. Sreenivasulu, and G. Srinivasan, Appl. Phys. Lett. 102, 222407 (2013).

    Article  Google Scholar 

  22. A. B. Ustinov, Yu. K. Fetisov, S. V. Lebedev, and G. Srinivasan, Tech. Phys. Lett. 36, 166 (2010).

    Article  Google Scholar 

  23. V. Petrov, M. Bichurin, A. Saplev, et al., J. Appl. Phys. 121, 224103 (2017).

    Article  Google Scholar 

  24. S. Shastry, G. Srinivasan, M. I. Bichurin, et al., Phys. Rev. B 70, 064416 (2004).

    Article  Google Scholar 

  25. N. I. Polzikova, S. G. Alekseev, I. L. Pyatakin, et al., AIP Adv. 6, 056306 (2016).

    Article  Google Scholar 

  26. Yu. V. Khivintsev, V. K. Sakharov, S. L. Vysotskii, Yu. A. Filimonov, A. I. Stognii, and S. A. Nikitov, Tech. Phys. 63, 1029 (2018).

    Article  Google Scholar 

  27. A. I. Stognij, L. V. Lutsev, V. E. Bursian, and N. N. Novitskii, J. Appl. Phys. 118, 023905 (2015).

    Article  Google Scholar 

  28. A. Stognij, L. Lutsev, N. Novitskii, et al., J. Phys. D: Appl. Phys. 48, 485002−8 (2015).

    Article  Google Scholar 

  29. V. K. Sakharov, Y. V. Khivintsev, S. L. Vysotskii, et al., IEEE Magn. Lett. 8, 3704804 (2017).

    Article  Google Scholar 

  30. V. K. Sakharov, Yu. V. Khivintsev, and S. L. Vysotskii, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam. 25 (1), 35 (2017).

    Google Scholar 

  31. S. E. Bushnell, W. B. Nowak, S. A. Oliver, and C. Vittoria, Rev. Sci. Instrum. 63, 2021 (1992).

    Article  Google Scholar 

  32. A. R. Smith and R. V. Jones, J. Appl. Phys. 34, 1283 (1963).

    Article  Google Scholar 

  33. V. I. Shcheglov, Mikroelektronika 16, 374 (1987).

    Google Scholar 

  34. B. Hoekstra, F. van Doveren, and J. M. Robertson, Appl. Phys. 12, 261 (1977).

    Article  Google Scholar 

  35. Low Voltage Co-Fired Multilayer Stacks, Rings and Chips for Actuation Model (Piezomechanik GmbH, Munich, 2014), p. 22. https://www.piezomechanik.com/fileadmin/filestorage/Kataloge/en/Piezomechanik_Multilayer_Katalog_E_WEB_1__2014-04-27.pdf.

  36. A. G. Gurevich and G. A. Melkov, Magnetic Oscillations and Waves (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  37. S. L. Vysotskii, G. T. Kazakov, A. V. Maryakhin, et al., Radiotekh. Elektron. (Moscow) 37, 1086 (1987).

    Google Scholar 

  38. Z. K. Nesteruk, R. Zuberek, S. Piechota, et al., Measurement Sci. Tech. 25, 075502 (2014).

    Article  Google Scholar 

  39. A. V. Lugovskoi and V. I. Shcheglov, 27, 518 (1982).

  40. N. M. Salanskii and M. Sh. Erukhimov, Physical Properties and Application of Thin Magnetic Films (Nauka, Novosibirsk, 1973) [in Russian].

    Google Scholar 

  41. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970; Nauka, Moscow, 1979).

  42. E. J. Boyd and D. Uttamchandani, J. Microelectromechan. Syst. 21, 243 (2012).

    Google Scholar 

  43. S. Krupicka, Physik der Ferrite und der VerwandtenMagnetischen Oxide (Academia, Prague, 1973; Mir, Moscow, 1976), Vol. 2, p. 13.

    Google Scholar 

  44. L. D. Landau and E. M. Lifshits, Theory of Elasticity (Nauka, Moscow, 1987; Pergamon, New York, 1986).

  45. I. Nedkov, M. Gyuot, and V. Cagan, J. Magnetism & Magnetic Mater. 159, 331 (1996).

    Article  Google Scholar 

  46. D. F. Gibbons and V. G. Chirba, Phys. Rev. 110, 770 (1958).

    Article  Google Scholar 

  47. H. M. Chou and E. D. Case, J. Mater. Sci. Lett. 7, 1217 (1988).

    Article  Google Scholar 

  48. C. Rossingnol, B. Perrin, B. Bonello, et al., Phys. Rev. B 70, 094102 (2004).

    Article  Google Scholar 

Download references

Funding

This study was accomplished within the state assignment no. 0030-2019-0013 Spectronics; it was partially supported by the Russian Foundation of Basic Research (projects nos. 16-29-14058 and 18-57-00008_Bel) and the Belorussian Republican Foundation of Basic Research (project F18R-086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Vysotskii.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysotskii, S.L., Khivintsev, Y.V., Kozhevnikov, A.V. et al. The Influence of Strains on the Ferromagnetic Resonance Spectrum of Submicron Yttrium Iron Garnet Films Obtained by Ion Beam Sputtering. J. Commun. Technol. Electron. 64, 1398–1406 (2019). https://doi.org/10.1134/S1064226919100140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226919100140

Navigation