Skip to main content
Log in

Photodetectors with 384 × 288 Matrix Elements for the Infrared Range of 8–10 Microns

  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract—Design and fabrication of photosensitive array elements in the 384 × 288 element format with a step of 25 μm with a long wavelength limit of sensitivity at 0.5 to approximately 9.5 μm were performed. The circuit and topology were developed, according to which matrix high-speed multiplexers are manufactured in the form of 384 × 288 elements with a step of 25 microns, which provide operating modes at a clock frequency of up to 20 MHz. The 384 × 288 element hybrid photodetector (PD) format in 25 μm increments has an average Noise Equivalent Temperature Difference (NETD) of less than 30 mK, while the number of working elements was more than 97%. Examples are given of using the microscanning system to reduce defective pixels in an image frame and/or increase the frame format to 768 × 576. It is shown that as a result of the use of microscans in a thermal imaging channel based on the developed PD during the transition to the 768 × 576 format, an improvement in spatial resolution of 1.4 times was obtained for the same minimum resolved temperature difference (MRTD), while the MRTD at a frequency of 0.44 mrad-1 decreased from 1.6 to 0.9 K compared to the original 384 × 288 format.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. Rogalski, Infrared Detectors, Second Ed. (CRS, Taylor&FransisGrou, New York, 2011).

    Google Scholar 

  2. R. Breiter, H. Figgemeier, H. Lutz, J. Wendler, S. Rutzinger, and T. Schallenberg, Proc. SPIE 9451, 945128 (2015).

    Article  Google Scholar 

  3. C. Cervera, N. Baier, O. Gravrand, L. Mollard, C. Lobre, G. Destefanis, J. P. Zanatta, O. Boulade, and V. Moreau, Proc. SPIE 9451, 945129 (2015).

    Article  Google Scholar 

  4. S. M. Borzov, V. I. Kozik, and O. I. Potaturkin, Izv. Vyssh. Uchebn. Zaved., Priborostr. 52 (6), 11 (2009).

    Google Scholar 

  5. S. I. Zhegalov, V. N. Solyakov, and V. G. Fetyukhina, Prikl. Fiz., No. 2, 80 (2011).

  6. R. Breiter, T. Ihle, J. C. Wendler, et al., Opt. Eng. 50, 061010 (2011).

    Article  Google Scholar 

  7. A. V. Predein, Yu. G. Sidorov, I. V. Sabinina, V. V. Vasil’ev, G. Yu. Sidorov, and I. V. Marchishin, Avtometriya 49 (5), 78 (2013).

    Google Scholar 

  8. A. P. Kovchavtsev, G. Yu. Sidorov, A. E. Nastovjak, A. V. Tsarenko, I. V. Sabinina, and V. V. Vasilyev, J. Appl. Phys. 121, 125304 (2017).

    Article  Google Scholar 

  9. A. Rogalski, Prog. Quantum Electron. 36, 342 (2012).

    Article  Google Scholar 

  10. A. V. Zverev, Yu. S. Makarov, E. A. Mikhantiev, et al., J. Phys.: Conf. Ser. 643, 012055 (2015).

    Google Scholar 

  11. S. A. Dvoretskiy, A. V. Zverev, Yu. S. Makarov, and E. A. Mikhantiev, in Proc. 16th Int. Conf. of Young Specialists on Micro/Nanotechnologies and Electron Devices, Novosibirsk, June 29–July 3, 2015 (NSTU, Novosibirsk, 2015), p. 302.

  12. VENUS-LW 384 × 288 – 25 μm pitch – MCT. http://www.sofradir.com.

  13. MCT matrix array-LW 384 × 288 – 24 μm pitch. http://www.aim-ir.com.

  14. I. I. Kremis, D. A. Tolmachev, and R. A. Gladkov, Prikl. Fiz., No. 1, 58 (2017).

  15. I. I. Kremis, V. A. Moiseev, K. P. Shatunov, E. O. Ul’yanova, R. A. Gladkov, and A. A. Gorshkov, Usp. Prikl. Fiz. 5 (5), 189 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Vasil’ev or I. I. Kremis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zverev, A.V., Suslyakov, A.O., Sabinina, I.V. et al. Photodetectors with 384 × 288 Matrix Elements for the Infrared Range of 8–10 Microns. J. Commun. Technol. Electron. 64, 1024–1029 (2019). https://doi.org/10.1134/S1064226919090171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226919090171

Keywords:

Navigation