Skip to main content
Log in

Remote Control of the Surface Movement of an Object Using a Two-Channel SHF Autodyne Generator

  • APPLICATIONS OF RADIOTECHNOLOGY AND ELECTRONICS IN BIOLOGY AND MEDICINE
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

In this paper, we describe a method for restoring reflector motion using a radio-wave signal from a super high frequency (SHF) autodyne generator based on a Gunn diode. The proposed method consists in sequential emission and reception of an electromagnetic SHF signal reflected from an object using two channels that differ in electrical length providing the π/2-phase shift of interference signals. With this method, there is no ambiguity in determining the amplitude of reflector movement and no need to determine the initial phase of the detected signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. O. V. Betskii, N. N. Lebedeva, and Yu. G. Yaremenko, Radiotekhnika, No. 3, 4 (2007).

    Google Scholar 

  2. A. V. Abramov, A. I. Amosova, L. N. Anishchenko, et al., Bioradar (MGTU im. N.E. Baumana, Moscow, 2010).

  3. A. Jeung et al., “Method and System for Monitoring Breathing Activity of a Subject,” Patent USA 2007/076935.

  4. Real-time Position Management™ (RPM) Respiratory Gating [Elektron. Res.]. https://www.varian.com/oncology/products/real-time-tracking-motion-management/ real-time-position-management-rpm.

  5. Doppler Radar Physiological Sensing, Ed. by O. Boric-Lubecke, V. M. Lubecke, A. D. Droitcour, (Wiley, Hoboken, 2016).

    Google Scholar 

  6. D. A. Usanov, Al. V. Skripal’, An. V. Skripal’, et al., Biomed. Tekhnol. & Radioelektron., No. 11–12, 44 (2005).

  7. V. A. Viktorov, B. V. Lunkin, and A. S. Sovlukov, Radio Wave Measurements of Parameters of Technology Processes (Energoatomizdat, Moscow, 1989).

    Google Scholar 

  8. D. A. Usanov, A. V. Skripal’, and E. O. Kashchavtsev, Tech. Phys. Lett. 39, 268 (2013).

    Article  Google Scholar 

  9. D. A. Usanov and A. E. Postel’ga, Med. Tekh., No. 1, 8 (2011).

  10. D. A. Usanov, A. E. Postel’ga, and A. A. Doroshenko, Med. Fiz., No. 1, 78 (2013).

  11. I. S. Gonorovskii, Radio Circuits and Signals (Radio i Svyaz’, Moscow, 1986) [in Russian].

    Google Scholar 

  12. V. Ya. Noskov, K. A. Ignatkov, and A. P. Chupakhin, Datchiki & Sist., No. 6, 31 (2016).

  13. V. Ya. Noskov, Instrum. Experim. Tech. 58, 505 (2015).

    Article  Google Scholar 

  14. S. V. Gangnus, A. V. Skripal’, and D. A. Usanov, Avtometriya, No. 1, 31 (1999).

  15. Demodulation of Signals with Angular Modulation. PM and FM Demodulators. http://www.dsplib.ru/content/fmdemod/fmdemod.html (Cited: September 1, 2017).

  16. N. B. Tumanov and N. M. Zakarlyuk, Elektron. Tekh. Ser. Elektronika SVCh., No. 10, 6 (1985).

  17. Reference Book on Radio-Electronic Devices, Ed. by D. P. Linde (Energiya, Moscow, 1978) [in Russian].

    Google Scholar 

  18. SanPiN 2.1.8/2.2.4.1383-03 “Hygienic requirements to placement and operation of the transferring radio engineering objects,” Sanitary and Epidemiologic Rules and Standards (Moscow, 2003).

  19. MUK 4.3.1167-02. Determination of Density of the Flow of Energy of the Electromagnetic Field in Locations of the Radio Means Working in the Range of Frequencies of 300 MHz-300 GHz (Minzdrav Rossii, Moscow, 2002).

  20. NationalInstruments: Testing, Measurements and the Built-in Systems http://www.ni.com/ru-ru.html (Cited: September 1, 2017).

  21. A. I. Solonina and S. M. Arbuzov, Digital Processing of Signals. Modeling in MATLAB (BKhV-Peterburg, St.Petersburg, 2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Usanov.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetrova, I.V., Doroshenko, A.A., Postel’ga, A.E. et al. Remote Control of the Surface Movement of an Object Using a Two-Channel SHF Autodyne Generator. J. Commun. Technol. Electron. 64, 409–416 (2019). https://doi.org/10.1134/S1064226919040119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226919040119

Navigation