Advertisement

Bin Packing Problems (Promising Models and Examples)

  • M. Sh. Levin
Information Technology in Engineering Systems

Abstract

The paper is devoted to the promising bin packing problems and some applications. A system view on the formulation of problems based on a set of elements (objects), a set of containers, and binary relations over the specified sets (precedence, dominance, and correspondence of elements to containers) is suggested. Special versions of packing problems with estimations of elements (objects) based on multisets are described. Examples in communication networks, such as the choice of information messages and two-dimensional packaging of messages in WiMAX systems are also briefly considered.

Keywords

combinatorial optimization packing in containers multisets application 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Alouf, E. Altman, J. Galtier, J.-F. Lalande, and C. Touati, “Quasi-optimal resource allocation in multispot MFTDMA satellite networks,” in Combinatorial Optimization in Communication Networks, Ed. by M. X. Cheng, Y. Li, and D.-Z. Du (Springer-Verlag, New York, 2006), pp. 325–365.CrossRefGoogle Scholar
  2. 2.
    N. Bansal, A. Caprara, and M. Sviridenko, “A new approximation method for set covering problems with applications to multidimensional bin packing,” SIAM J. Comput. 39, 1256–1278 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    J. A. Bennell and J. F. Oliveira, “A tutorial in irregular shape packing problems. J. ORS 60, 93–105 (2009).zbMATHGoogle Scholar
  4. 4.
    J. A. Bennell and X. Song, “A beam search implementation for the irregular shape packing problem,” J. Heuristics 16, 167–188 (2010).CrossRefzbMATHGoogle Scholar
  5. 5.
    E. G. Birgin, J. M. Martinez, and D. P. Ronconi, “Optimizing the packing of cylinders into a rectangular container: A nonlinear approach,” Eur. J. Oper. Res. 160, 19–33 (2005).CrossRefzbMATHGoogle Scholar
  6. 6.
    A. R. Brown, Optimal Packing and Depletion (American Elsevier, New York, 1971).Google Scholar
  7. 7.
    J. I. Bruno and P. J. Downey, “Probabilistic bounds for dual bin packing,” Acta Inform. 22, 333–345 (1985).MathSciNetzbMATHGoogle Scholar
  8. 8.
    D. G. Cattrisse and L. N. Van Wassenhove, “A survey of algorithms for the generalzied assignment problem,” Eur. J. Oper. Res. 60, 260–272 (1992).CrossRefGoogle Scholar
  9. 9.
    Y. Chung, “Inverse bin-packing number problems: NP-hardness and approximation algorithms,” Manag. Sci. and Fin. Eng. 18 (2), 19–22 (2012).Google Scholar
  10. 10.
    C. Cicconetti, L. Lenzini, A. Lodi, S. Martello, E. Mingozzi, and M. Monaci, “Efficient two-dimensional data location in IEEE.802.16 OFDMA,” in Proc. IEEE INFOCOM 2010 (IEEE, Piscataway, 2010), pp. 2160–2168.Google Scholar
  11. 11.
    C. Cicconetti, L. Lenzini, A. Lodi, S. Martello, E. Mingozzi, and M. Monaci, “A fast and efficient algorithm to exploit multi-user diversity in IEEE 802.16 BandAMC,” Comp. Netw. 55 (16), 3680–3693 (2011).CrossRefGoogle Scholar
  12. 12.
    C. Cicconetti, L. Lenzini, A. Lodi, S. Martello, E. Mingozzi, and M. Monaci, “Efficient two-dimensional data allocation in IEEE 802.16 OFDMA,” IEEE/ACM Trans. Netw. 22 1645–1658 (2014).CrossRefGoogle Scholar
  13. 13.
    E. G. Coffman, Jr., and J. Y.-T. Leung, and D. W. Ting, “Bin packing: Maximizing the number of pieces packed. Acta Informatica,” 9, 263–271 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “An application of bin-packing to multiprocessor scheduling,” SIAM J. Comput 7 (1), 1–17 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    E. G. Coffman, Jr. and J. Y.-T. Leung, “Combinatorial analysis of an efficient algorithm for processor and storage allocation,” SIAM J. Comput. 8, 202–217 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “Approximation algorithms for bin packing: A survey,” in Approximation Algorithms, Ed. by D. Hochbaum (PWS Publishing Company. 1996), pp. 46–93.Google Scholar
  17. 17.
    E. G. Coffman, Jr., C. Courcoubetis, M. R. Garey, D. S. Johnson, P. W. Shor, R. R. Weber, and M. Yannkakis, “Bin packing with discrete item sizes, part I: Perfect packing theorems and the average case behavior of optimal packings,” SIAM J. Discr. Math. 13, 384–402 (2000).CrossRefzbMATHGoogle Scholar
  18. 18.
    E. G. Coffman, Jr., C. Courcoubetis, M. R. Garey, D. S. Johnson, P. W. Shor, R. R. Weber, and M. Yannakakis, “Perfect packing theorem and the averagecase behavior of optimal and online bin packing,” SIAM Review 44, 95–108 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    E. G. Coffman, Jr. and J. Csirik, “Classification scheme for bin packing theory,” Acta Cybern. 18, 47–60 (2007).zbMATHGoogle Scholar
  20. 20.
    E. G. Coffman, Jr., G. Galambros, S. Martello, and D. Vigo, “Bin packing approximation algorithms: combinatorial analysis,” in Handbook of Combinatorial Optimization, Ed. by P. M. Pardalos, D.-Z. Du, and R. L. Graham, 2nd ed., (Springer-Verlag, 2013), pp. 455–531.CrossRefGoogle Scholar
  21. 21.
    R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of Scheduling (Addison-Wesley, Reading, Mass., 1967).zbMATHGoogle Scholar
  22. 22.
    T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed., (MIT Press and McGraw-Hill, Boston, 2001).zbMATHGoogle Scholar
  23. 23.
    M. Delorme, M. Iori, and S. Martello, Bin Packing and Cutting Stock Problems: Mathematical Models and Exact Algorithms, Res. Report OR-15-1 (Univ. of Bologna, 2015).zbMATHGoogle Scholar
  24. 24.
    H. Dyckhoff, “A typology of cutting and packing problems,” Eur. J. Oper. Res. 44, 145–159 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    H. Dyckhoff and U. Finke, Cutting and Packing in Production and Distribution: a Typology and Bibliography (Springer-Verlag, Berlin, 1992).CrossRefGoogle Scholar
  26. 26.
    L. Epstein and L. M. Favrholdt, “On-line maximizing the number of item packed in variable-sized bins,” Acta Cybern. 16, 57–66 (2013).MathSciNetzbMATHGoogle Scholar
  27. 27.
    L. Epstein and A. Levin, “On bin packing with conflicts,” SIAM J. Optim. 19, 1270–1298 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    L. Epstein, L. M. Favrholdt, and J. S. Kohrt, “Comparing online algorithms for bin packing problems,” J. Scheduling 15, 13–21 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    A. E. Muritiba, M. Iori, E. Malaguti, and P. Toth, “Algorithms for the bin packing problem with conflicts,” INFORMS J. on Comput. 22, 401–415 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    A. S. Fukunaga and R. E. Korf, “Bin completion algorithms for multicontainer packing, knapsack, and covering problems,” J. Art. Intell. Res. 28, 393–429 (2007).MathSciNetzbMATHGoogle Scholar
  31. 31.
    E. M. Furems, Models of Packing in Multicriterion Decision-Making Problems at Limited Resources, Preprint, (VNIISI, Moscow, 1986).Google Scholar
  32. 32.
    E. M. Furems, “Inverse problem of packing with qualitative criteria–statements and review of methods,” Iskusstv. Intel. i Prinyatie Resh., No. 3, 31–41 (2016).Google Scholar
  33. 33.
    G. Galambos, H. Kellerer, and G. J. Woeginger, “A lower bound for on-line vector packing algorithms,” Acta Cybern. 11, 23–34 (1994).MathSciNetzbMATHGoogle Scholar
  34. 34.
    M. R. Garey and D. S. Johnson, Computers and Intractability. The Guide to the Theory of NP-Completeness (W. H. Freeman and Company, San Francisco, 1979).zbMATHGoogle Scholar
  35. 35.
    M. Gendreau, G. Laporte, and F. Semmet, “Heuristics and lower bounds for the bin packing problem with conflicts,” Comp. and Oper. Res. 31, 347–358 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    P. C. Gilmore and R. E. Gomory, “A linear programming approach to the cutting stock problem II,” Oper. Res. 11, 863–888 (1963).CrossRefzbMATHGoogle Scholar
  37. 37.
    E. Hopper and B. Turton, “Application of genetic algorithms to packing problems -a review,” in Proc. of the 2nd Online World Conf. on Soft Comput. in Engineering Design and Manufacturing, 1997, Ed. by P. K. Chawdry, R. Roy, and R. K. Kant (Springer-Verlag, London, 1997), pp. 279–288.Google Scholar
  38. 38.
    E. Hopper and B. C. H. Turton, “A review of the application of meta-heuristic algorithms to 2D strip packing problems,” Artif. Intell. Rev. 16, 257–300 (2001).CrossRefzbMATHGoogle Scholar
  39. 39.
    R. Hubscher and F. Glover, “Applying tabu search with influential diversification to multiprocessor scheduling,” Comp. and Oper. Res. 21, 877–884 (1994).CrossRefzbMATHGoogle Scholar
  40. 40.
    K. Jansen, “An approximation scheme for bin packing with conflicts,” J. Comb. Opt. 3, 363–377 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    D. S. Johnson, “Near-optimal bin-packing algorithm,” Doctoral Thesis (Dept. of Mathematics, MIT, Cambridge, Mass., 1973).Google Scholar
  42. 42.
    D. S. Johnson, Fast algorithms for bin packing. J. Comp. and Syst. Sci. 8, 272–314 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, “Worst-case performance bounds for simple one-dimensional packing algorithm,” SIAM J. Optim. 3, 299–325 (1974).MathSciNetzbMATHGoogle Scholar
  44. 44.
    R. M. Karp, “Reducibility among combinatorial problems.,” in Complexity of Computer Computations, Ed. by R. E. Miller and J. W. Thatcher (Plenum., 1972), pp. 85–103.CrossRefGoogle Scholar
  45. 45.
    H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems (Springer-Verlag, Berlin, 2004).CrossRefzbMATHGoogle Scholar
  46. 46.
    H. W. Kuhn, “The Hungarian method for the assignment problems,” Nav. Res. Log. 52, 7–21 (2005).CrossRefGoogle Scholar
  47. 47.
    M. Labbe, G. Laporte, and S. Martello, “Upper bounds and algorithms for the maximum cardinality bin packing problem,” Eur. J. Oper. Res. 149, 490–498 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    M. Sh. Levin, “Modular design and improvement of the management system in the smart home with the use of interval multiset estimates,” J. Commun. Technol. Electron. 58, 584–593 (2013).CrossRefGoogle Scholar
  49. 49.
    M. Sh. Levin, Decision Support Technology for Modular Systems. Electronic Book (Moscow, 2013). https://doi.org/www.mslevin.iitp.ru/Levin-bk-Nov2013-071.pdf Google Scholar
  50. 50.
    M. Sh. Levin, Modular System Design and Evaluation (Sprigner-Verlag, New York, 2015).CrossRefGoogle Scholar
  51. 51.
    M. Sh. Levin, “Towards bin packing (preliminary problem survey, models with multiset estimates),” Elec. Preprint, (May 24, 2016). https://doi.org/arxiv.org/abs/1605.07574[cs.AI] Google Scholar
  52. 52.
    M. Sh. Levin, “On reconfiguration of solutions in combinatorial optimization,” Inf. Protsessy 16, 414–429 (2016).Google Scholar
  53. 53.
    A. Lodi, S. Martello, and D. Vigo, “Heuristic and metaheuristic approaches for a class of two-dimensional bin packing problems,” INFORMS J. on Comput 11, 345–357 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    A. Lodi, S. Martello, and D. Vigo, “Recent advances on two-dimensional bin packing problems,” Disc. Appl. Mat. 123, 379–396 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    A. Lodi, S. Martello, and M. Monaci, “Two-dimensional bin packing problems: A survey,” Eur. J. of Oper. Res. 141, 241–252 (2002).CrossRefzbMATHGoogle Scholar
  56. 56.
    A. Lodi, S. Martello, and D. Vigo, “TSpack: a unified tabu search code for multidimensional bin packing problems,” Ann. Oper. Res. 131 (1-4), 203–213 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    A. Lodi, S. Martello, M. Monaci, C. Cicconetti, L. Lenzini, E. Mingozzi, C. Eklund, and J. Moilanen, “Efficient two-dimensional packing algorithms for mobile WiMAX,” Man. Sci. 57, 2130–2144 (2011).CrossRefGoogle Scholar
  58. 58.
    S. Martello and P. Toth, Knapsack Problems (Wiley, Chichester, 1990).zbMATHGoogle Scholar
  59. 59.
    S. Martello, D. Pisinger, and D. Vigo, “The threedimensional bin packing problem,” Oper. Res. 48, 256–267 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    S. Martello, “Two-dimensional packing problems in telecommunications,” Pesquisa Operacional 34, 31–38 (2014).CrossRefGoogle Scholar
  61. 61.
    M. Peeters and Z. Degraeve, “Branch-and-price algorithms for dual bin packing and maximum cardinality bin packing problem,” Eur. J. of Oper. Res. 170, 416–439 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    D. Pisinger and M. Sigurd, “The two-dimensional bin packing problem with variable sizes and costs,” Discr. Optim. 2, 154–167 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    C. Reeves, “Hybrid genetic algorithms for bin-packing and related problems,” Ann. Oper. Res. 63, 371–396 (1996).CrossRefzbMATHGoogle Scholar
  64. 64.
    R. Sadykov and F. Vanderbeck, “Bin packing with conflicts: a generic branch-and-price algorithm,” INFORMS J. on Comput. 25, 244–255 (2013).MathSciNetCrossRefGoogle Scholar
  65. 65.
    S. S. Seiden, R. van Stee, and L. Epstein, “New bounds for variable sized online bin packing,” SIAM J. Comput. 32, 455–469 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    P. E. Sweeney and E. R. Paternoster, “Cutting and packing problems: a categorized, application-orientated research bibliography,” J. OR 43, 691–706.Google Scholar
  67. 67.
    H. Terashima-Martin, P. Ross, C. J. Farias-Zarate, E. Lopez-Camacho, and M. Valenzuela-Rendon, “Generalized hyper-heuristics for solving 2D regular and irregular packing problems,” Ann. Oper. Res. 179, 369–392 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    J. D. Ullman, The Performance of a Memory Allocation Algorithm. Techn. Report 100 (Princeton Univ., Princeton, NJ, 1971).Google Scholar
  69. 69.
    J. M. de Carvalho, “LP models for bin packing and cutting stock problems,” Eur. J. Oper. Res. 141, 253–273 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    G. Wascher, H. Haussner, and H. Schumann, “An improved typology of cutting and packing problems,” Eur. J. Oper. Res. 183, 1109–1130 (2007).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations