On Combinatorial Models of Generations of Wireless Communication Systems

Abstract

In this paper, the following issues are considered: (i) a brief review of wireless mobile technologies including their evolution (1G, 2G, 3G, 4G, 5G, and 6G system generations), (ii) the use of hierarchical combinatorial models for the description of wireless communication system generations, and (iii) the use of a twostage modular method for improving (predicting) the version of the 5G wireless system generation (based on the block pack problem). The presented examples illustrate the proposed approaches to modeling and improvemen of wireless communication systems.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Abrol and R. K. Jha, “Power optimization in 5G networks: a step towards green communication,” IEEE Access. 4, 1355–1374 (2016).

    Article  Google Scholar 

  2. 2.

    A. Afuah, Innovation Management: Strategies, Implementation and Profits (Oxford Univ., Oxford, 2003).

    Google Scholar 

  3. 3.

    A. Ahmed and E. Ahmed, “A survey on mobile edge computing,” in Proc. IEEE Int. Conf. Intell. Syst. Control (ISCO), Coimbatore, India, 2016 (IEEE, New York, 2016), pp. 1–8.

    Google Scholar 

  4. 4.

    A. M. Akhtar, X. Wang, and L. Hanzo, “Synergistic spectrum sharing in 5G HetNets: A harmonized SDBEnabled approach,” IEEE Commun. Mag. 53, 40–47 (2016).

    Article  Google Scholar 

  5. 5.

    I. F. Akyildiz, D. M. Gutierrez-Estevez, and E. C. Reyes, “The evolution to 4G cellular systems: LTE,” Adv. Phys. Commun. 3, 217–244 (2010).

    Article  Google Scholar 

  6. 6.

    M. Andrew, “A strategic assessment of PLA theatre missile and ASAT capabilities,” Air Power Australia Analyses 7 (2) (2010).

    Google Scholar 

  7. 7.

    J. Andrews, “The seven ways hetnets are a paradigm shift,” IEEE Commun. Mag. 51, 136–144 (2013).

    Article  Google Scholar 

  8. 8.

    J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanli, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).

    Article  Google Scholar 

  9. 9.

    S. Barbarossa, S. Sardellitti, and P. D. Lorenzov, “Communicating while computing: Distributed mobile cloud computing over 5G heterogeneous networks,” IEEE Signal Process. Mag. 31, No. 6, 45–55 (2014).

    Article  Google Scholar 

  10. 10.

    D. K. Barton, “Recent developments in Russian radar systems,” in Proc. of IEEE Int. Radar Conf., Washington, DC, USA. 1995 (IEEE, New York, 1995), pp. 340–346.

    Google Scholar 

  11. 11.

    G. Berardinelli, K. I. Pedersen, T. B. Sorensen, and P. Mogensen, “Generalized DFT-Spread-OFDM as 5G waveform,” IEEE Commun. Mag. 54 (11), 99–105 (2016).

    Article  Google Scholar 

  12. 12.

    R. Berezdivin, R. Breinig, and R. Topp, Next generation wireless communications concepts and technologies. IEEE Commun. Mag. 40 (3), 108–116 (2002).

    Article  Google Scholar 

  13. 13.

    M. R. Bhala and A. V. Bhala, “Generations of mobile wireless technology: A survey,” Int. J. Comp. Appl. 5 (4), 26–32 (2010).

    Google Scholar 

  14. 14.

    N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic, R. Sukhavasi, C. Patel, and S. Geirhofer, “Network densification: the dominant theme for wireless evolution into 5G,” IEEE Commun. Mag. 52 (2), 82–89 (2014).

    Article  Google Scholar 

  15. 15.

    F. Boccardi, R. W. Health, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52 (2), 74–80 (2014).

    Article  Google Scholar 

  16. 16.

    C. Bockelmann, N. Pratas, H. Nikopour, K. Au, T. Svensson, C. Stefanovic, P. Popovski, and A. Dekorsy, “Massive machine-type communications in 5G: physical and MA C-layer solutions,” IEEE Commun. Mag. 54 (9), 59–64 (2016).

    Article  Google Scholar 

  17. 17.

    L. Bondan, C. R. P. Santos, and L. Z. Granville, “Management requirements for ClickOS-based network function virtualization,” in Proc. 10th Int. Conf. on Network and Service Management (CNSM), Rio de Janeiro, Brazil, Nov. 17–21, 2014 (IEEE, New York, 2014), pp. 447–450.

    Google Scholar 

  18. 18.

    G. Boudreau, J. Panicker, N. Guo, R. Chang, N. Wang, and S. Vrzic, “Interference coordination and cancellation for 4G networks,” IEEE Commun. Mag. 47 (4), 74–81 (2009).

    Article  Google Scholar 

  19. 19.

    A. Bria, F. Gessler, O. Queseth, R. Stridth, M. Unbehaun, J. Wu, and J. Zendler, “4 generation wireless infrastructure: scenarios and research challenges,” IEEE Personal Commun. 8 (6), 25–31 (2001).

    Article  Google Scholar 

  20. 20.

    W. Cheng-Xiang et al., “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52, 122–130 (2014).

    Google Scholar 

  21. 21.

    S. Chiesa and M. Fioriti, “About feasibility of a 5th generation light fighter aircraft,” J. Mech. Engineering Automation. 4, 441–450 (2014).

    Google Scholar 

  22. 22.

    W. H. Chin, Z. Fan, and R. Haines “Emerging technologies and research challenges for 5G wireless networks,” IEEE Wireless Commun. 21, 106–112 (2014).

    Article  Google Scholar 

  23. 23.

    N. M. K. Chowdhury and P. Boutaba, “A survey of network virtualization. Computer Networks,” 54, 862–876 (2010).

    MATH  Article  Google Scholar 

  24. 24.

    J. Chuang and N. Sollenberger, “Beyong 3G: Wideband wireless data access based on OFDM and dynamic packet assignment,” IEEE Commun. Mag. 38, 78–87 (2000).

    Article  Google Scholar 

  25. 25.

    E. Dahlman et al., “5G wireless access: requirements and realization,” IEEE Commun. Mag. 52 (12), 42–47 (2014).

    Article  Google Scholar 

  26. 26.

    P. Demestichas, A. Georakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the horizon: key challenges for the radio-access network,” IEEE Vehicular Technol. Mag. 8 (3), 47–53 (2013).

    Article  Google Scholar 

  27. 27.

    V. P. Efremov, “SA-12 system overview,” in Proc. Seminar at IEEE Radar Conf., Atlanta, GA, USA, Mar. 29–31, 1994 (IEEE, New York, 1994).

    Google Scholar 

  28. 28.

    O. O. Fagbohun, “Comparative studies on 3G, 4G and 5G wireless technology,” IOSR J. Electron. Commun. Eng. 9 (3), 88–94 (2014).

    Google Scholar 

  29. 29.

    N. Feamster, J. Rexford, and E. Zegura, “The road of SDN: an intellectual history of programmable networks,” ACM SIGCOMM Comput. Commun. Rev. 44 (2), 87–98 (2014).

    Article  Google Scholar 

  30. 30.

    A. Ghosh, R. Ratasuk, B. Mondai, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Wireless Commun. 17 (3), 10–22 (2010).

    Article  Google Scholar 

  31. 31.

    A. Ghosh, J. Zhang, J. G. Andrews, and R. Muhamed, Fundamentals of LTE (Prentice-Hall, 2011).

    Google Scholar 

  32. 32.

    J. Gill and S. Singh, “Future prospects of wireless generations in mobile communication,” Asian J. Comp. Sci. Technol. 4 (2), 18–22 (2015).

    Google Scholar 

  33. 33.

    A. Gohil and S. K. Patel, “5G technology of mobile communication: A survey,” in Proc. 2013 Int. Conf. on Intelligent Systems Processing (ISSP),Vallabh Vidyanagar, Anand, India, Mar. 1–2, 2013 (ISSP, 2013), pp. 288–292.

    Google Scholar 

  34. 34.

    K. Goswami, K. Sahu, and A. Shukla, “Upcoming technologies: 5G and 6G,” in Proc. Nat. Conf. on Knowledge, Innovation in Technology and Engineering (NCKITE), Raipur, India, Apr. 10–11, 2015 (NCKITE, 2015), pp. 35–37.

    Google Scholar 

  35. 35.

    J. Govil and J. Govil, “4G mobile communication systems: turns, trends and transition,” in Proc. Int. Conf. on Convergence Information Technology (ICCIT 2007),Gyeongju, Korea, Nov. 21–23, 2007 (IEEE, NewYork, 2007), pp. 13–18.

    Google Scholar 

  36. 36.

    B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualization: challenges and opportunities for innovation,” IEEE Commun. Mag. 53 (2), 90–97 (2015).

    Article  Google Scholar 

  37. 37.

    S. F. Hasan, “5G communication technology,” in Emerging Trends in Communication Networks (Springer, 2014), pp. 59–69.

    Google Scholar 

  38. 38.

    H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: state of the art, challenges, and implementation in next generation mobile networks (vEPC),” IEEE Networks 28 (6), 18–26 (2014).

    Article  Google Scholar 

  39. 39.

    A. J. Hebert, “Fighter generations,” Air Force Mag., Sept., 32 (2008).

  40. 40.

    F. Hillebrand, GSM and UMTS, the Creation of Global Communications (Wiley, New York, 2001).

    Google Scholar 

  41. 41.

    S. Hossain, “5G wireless communication systems,” Am. J. Eng. Res. 2 (10), 344–353 (2013).

    Google Scholar 

  42. 42.

    S. Y. Hui and K. H. Yeung, “Challenges in the migration to 4G mobile systems,” IEEE Commun. Mag. 41 (12), 54–59 (2003).

    Article  Google Scholar 

  43. 43.

    A. Imran and A. Zoha, “Challenges in 5G: how to empower SON with big data for enabling 5G,” IEEE Network. 28, 27–33 (2014).

    Article  Google Scholar 

  44. 44.

    T. Jiang, S. Mao, Z. Zhang, and D. Chen, (eds), Special issue on “Next Generation Wireless Communication Technologies,” Digital Commun. Networks 2 (4), 159–161 (2016).

    Google Scholar 

  45. 45.

    M. Jo, T. Maksymyuk, B. Strykhalyuk, and C.-H. Cho, “Device-to-device-based heterogeneous radio access network architecture for mobile cloud computing,” IEEE Wireless Commun. 22 (3), 50–58 (2015).

    Article  Google Scholar 

  46. 46.

    M. G. Kachhavay and A. P. Thakare, “5G technologyevolution and revolution,” Int. J. Comput. Sci. Mobile Comput. 3, 1080–1087 (2014).

    Google Scholar 

  47. 47.

    E. A. Kadir, S. M. Shamsuddin, T. A. Rahman, and A. S. Ismail, “Big data network architecture and monitoring use wireless 5G technology,” Int. J. Adv. Soft Comput. Appl. 7 (1), 1–14 (2015).

    Google Scholar 

  48. 48.

    A. u. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey of mobile cloud computing application models.” IEEE Commun. Surveys Tuts 16 (1), 393–413 (2014).

    Article  Google Scholar 

  49. 49.

    R. Khutey, G. Rana, V. Dewangan, A. Tiwari, and A. Dewamngan, “Future of wireless technology G&7G,” Int. J. Electr. Electron. Res. 3, 583–585 (2015).

    Google Scholar 

  50. 50.

    Y. K. Kim and R. Prasad, 4G Roadmap and Emerging Communication Technologies (Artech House, 2006).

    Google Scholar 

  51. 51.

    D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proc. IEEE 103, 14–76 (2015).

    Article  Google Scholar 

  52. 52.

    A. Kumar, Y. Liu, J. Sengupta, “Evolution of mobile wireless communication networks, 1G to 4G,” Int. J. Electron. & Commun. Technol. (IJECT) 1, 68–72 (2010).

    Google Scholar 

  53. 53.

    S. Kumar, T. Agrawal, and P. Singh, “A future communication technology: 5G,” Int. J. Future Generation Commun. Networking 9, 303–310 (2016).

    Article  Google Scholar 

  54. 54.

    K. Kumaravel, “Comparative study of 3G and 4G in mobile technology,” Int. J. Comput. Sci. 8, 256–263 (2011).

    Google Scholar 

  55. 55.

    J. Kwak, Y. Kim, J. Lee, and S. Chong, “Dream: dynamic resource and task allocation for energy minimization in mobile cloud systems,” IEEE J. Select. Areas Commun. 33, 2510–2523 (2015).

    Article  Google Scholar 

  56. 56.

    M. Sh. Levin, “Combinatorial evolution of composite systems,” in Proc. 16th Eur. Meeting on Cybern. and Syst. Res., Austria, 2002 (EMCSR, Vienna, 2002), Vol. 1, pp. 275–280.

    Google Scholar 

  57. 57.

    M. Sh. Levin, Composite Systems Decisions (Springer-Verlag, 2006).

    Google Scholar 

  58. 58.

    M. Sh. Levin, “Towards communication network development (structural system issues, combinatorial models),” in Proc. 2010 IEEE Region 8 Int. Conf. SIBIRCON-2010, Irkutsk, 2010 (IEEE, New York, 2010), Vol. 1, pp. 204–208.

    Google Scholar 

  59. 59.

    M. Sh. Levin, “Towards combinatorial evolution of composite systems,” Expert Syst. Appl. 40, 1342–1351 (2013).

    Article  Google Scholar 

  60. 60.

    M. Sh. Levin, Modular System Design and Evaluation (Sprigner-Verlag, 2015).

    Google Scholar 

  61. 61.

    M. Sh. Levin, “Note on evolution and forecasting of requirements: communications example,” Electr. Prepr., (May 22, 2017). https://doi.org/arxiv.org/abs/1705.07558[cs.NI]

    Google Scholar 

  62. 62.

    M. Sh. Levin, “Towards combinatorial modeling of wireless technology generations,” Electr. Prepr. (Sep. 2. 2017). https://doi.org/arxiv.org/abs/1708.08996[cs.NI]

  63. 63.

    M. Sh. Levin, O. Kruchkov, O. Hadar, and E. Kaminsky, “Combinatorial systems evolution: example of standard for multimedia information,” Informatica 20, 519–538 (2009).

    MATH  Google Scholar 

  64. 64.

    M. Sh. Levin, A. Andrushevich, R. Kistler, and A. Klapproth, “Combinatorial evolution of ZigBee protocol,” in Proc. 2010 IEEE Region 8 Int. Conf. SIBIRCON-2010,Irkutsk, Russia, 2010, (IEEE, 2010), Vol. 1, pp. 314–319.

    Google Scholar 

  65. 65.

    M. Sh. Levin, A. Andrushevich, R. Kistler, and A. Klapproth, “Combinatorial evolution and forecasting of communication protocol ZigBee,” Electr. Prepr., (Apr. 15, 2012). https://doi.org/arxiv.org/abs/1204.3259[cs.NI]

    Google Scholar 

  66. 66.

    Y.-B. Lin, “OA&M for GSM network,” IEEE Network 11 (2), 46–57 (1997).

    Article  Google Scholar 

  67. 67.

    A. Maeder, A. Ali, A. Bedekar, A. F. Cattoni, D. Chandramouli, S. Chandrashekar, L. Du, M. Hesse, C. Sartori, and S. Turtinen, “A scalable and flexible radio access network architecture for fifth generation mobile networks,” IEEE Commun. Mag. 54 (11), 16–23 (2016).

    Article  Google Scholar 

  68. 68.

    P. Marsch, I. Da Silva, O. Bulakci, M. Tesanovic, S. E. El Ayoubi, T. Rosowski, A. Kaloxylos, and M. Boldi, “5G radio access network architecture: design guidelines and key considerations,” IEEE Commun. Mag. 54 (11), 24–32 (2016).

    Article  Google Scholar 

  69. 69.

    Y. Mao, C. You, K. Huang, and K. B. Letaief, “Mobile edge computing: survey and research outlook,” Electr. Preprint (Jan. 11, 2017). https://doi.org/arxiv.org/abs/1701.01090[cs.IT]

    Google Scholar 

  70. 70.

    A. Mehrotra, GSM System Engineering (Artech House, Boston, 1997).

    Google Scholar 

  71. 71.

    H. Mehta, D. Patel, B. Joshi, and H. Modi, “0G to 5G mobile technology: A survey,” J. Basic Appl. Engineering Res. 1 (6), 56–60 (2014).

    Google Scholar 

  72. 72.

    G. Miao and G. Song, Energy and Spectrum Efficient Wireless Network Design (Cambridge Univ. Press., Cambridge, 2014).

    Google Scholar 

  73. 73.

    N. Michailow, M. Matthe, I. S. Gaspar, A. N. Caldevilla, L. L. Mendes, A. Festag, and G. Fettweis, “Generalized frequency division multiplexing for 5th generation cellular networks,” IEEE Trans. Commun. 62, 3045–3061 (2014).

    Article  Google Scholar 

  74. 74.

    R. Mijumbi, J. Serrat, J. -L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba, Network function virtualization: state-of-the art and research challenges. IEEE Communications Surveys & Tutorials 18 (1), 236–262 (2016).

    Article  Google Scholar 

  75. 75.

    R. N. Mitra and D. P. Agrawal, “5G mobile technology: A survey,” ICT Express 1 (3), 132–137 (2015).

    Article  Google Scholar 

  76. 76.

    M. Mouly and M.-B. Pautet, The GSM System for Mobile Communications (Artech House, 1992).

    Google Scholar 

  77. 77.

    S. Mumtaz et al., Direct mobile-to-mobile communication: paradigm for 5G. IEEE Wireless Commun. 21 (5), 14–23 (2014).

    Article  Google Scholar 

  78. 78.

    O. Munoz, A. P-Iserte, and J. Vidal, “Joint optimization of radio and computational resources for multicell mobile-edge computing,” IEEE Trans. Signal Info. Process. Over Networks 1 (2), 89–103 (2015).

    MathSciNet  Article  Google Scholar 

  79. 79.

    G. Naik, V. Aigal, P. Sehgal, and J. Poojari, “Challenges in the implementation of fourth generation wireless systems,” Int. J. Engineering Res. Appl. 2 (2), 1353–1355 (2012).

    Google Scholar 

  80. 80.

    B. A. A. Nunes, M. Mendinca, X.-N. Nguen, K. Obraszka, and T. Turletti, “A survey of softwaredefined networking: past, present, and future of programmable networks,” IEEE Commun. Surv. Tutor 16, 1617–1634 (2014).

    Article  Google Scholar 

  81. 81.

    A. Osseiran et al., “Scenarios for 5G mobile and wireless communications: The vision of the METIS project,” IEEE Commun. Mag. 52 (5), 26–35 (2014).

    Article  Google Scholar 

  82. 82.

    J. Parikh and A. Basu, “LTE advanced: The 4G mobile broadband technology,” Int. J. Comput. Appl. 13 (5), 17–21 (2011).

    Google Scholar 

  83. 83.

    S. Patel, C. Malhar, and K. Kapadiya, “5G: Future Mobile Technology–Vision 2020,” Int. J. Comput. Appl. 54 (17), 6–10 (2012).

    Google Scholar 

  84. 84.

    S. Patil, V. Patil, and P. Bhat, “A review on 5G technology. Int. J. of Engineering and Innovative Technology,” 1, 26–30 (2012).

    Google Scholar 

  85. 85.

    K. Pedersen, P. Morgensen, and T. Kolding, “Overview of QoS options for HSDPA,” IEEE Commun. Mag. 44 (7), 100–105 (2006).

    Article  Google Scholar 

  86. 86.

    M. Peng, Y. Li, Z. Zhao, and C. Wang, “System architecture and key technologies for 5G heterogeneous cloud radio access networks,” IEEE Network 29 (2), 6–14 (2015).

    Article  Google Scholar 

  87. 87.

    P. Pirinen, “A brief overview of 5G research activities,” in Proc. 1st Int. Conf. on 5G for Ubiquitous Connectivity (5GU), Akaslompolo, Finland, Nov. 26–27, 2014 (IEEE, New York, 2014), pp. 17–22.

    Google Scholar 

  88. 88.

    V. Rahnema, “Overview of the GSM systems and protocol architecture,” IEEE Commun. Mag. 21 (4), 92–100 (1993).

    Article  Google Scholar 

  89. 89.

    T. S. Rappaport et al., “Millimeter wave mobile communications for 5G cellular: It will work,” IEEE Access 1, 335–349 (May 2013).

    Google Scholar 

  90. 90.

    K. Raza and M. Turner, Cisco Network Topology and Design (Cisco Press, 2002).

    Google Scholar 

  91. 91.

    D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, “Mobile-edge computing architecture: The role of MEC in the Internet of Things,” IEEE Consum. Electron. Mag. 5 (4), 84–91 (2016).

    Article  Google Scholar 

  92. 92.

    P. Sharma, “Evolution of mobile wireless communication networks–1G to 5G as well future prospective of next generation communication network,” Int. J. Comput. Sci. Mobile Comput. 2 (8), 47–53 (2013).

    Google Scholar 

  93. 93.

    M. M. Siddiqui, “Vision of 5G communication,” in High Performance Architecture and Grid Computing (Springer, 2011), pp. 252–256.

    Google Scholar 

  94. 94.

    A. P. Singh, S. Nigam, and N. K. Gupta, “A study of next generation wireless network 6G,” Int. J. Innovative Res. Comput. Commun. Engineering. 4, 871–874 (2007).

    Google Scholar 

  95. 95.

    S. Singh and P. Singh, “Key concepts and network architecture for 5G mobile networks,” Int. J. Sci. Res. Engineering & Technol. 1, 165–170 (2012).

    Google Scholar 

  96. 96.

    S. Singh and R. K. Jha, “A survey on software defined networking: Architecture for next generation network,” J. Network Syst. Management 25, 321–374 (2017).

    Article  Google Scholar 

  97. 97.

    M. Suryanegara and K. Miyazaki, “Technological changes in the innovation system towards 4G mobile service,” Int. J. Technol., Policy & Management 10, 375–394. (2010).

    Article  Google Scholar 

  98. 98.

    J. Thompson, X. Ge, H. C. Wu, R. Irmer, H. Jiang, G. Fettweis, and S. Alamouti, “5G wireless communication systems: prospects and challenges,” IEEE Commun. Mag. 52 (2), 62–64 (2014).

    Article  Google Scholar 

  99. 99.

    J. A. Tirpak, “The sixth generation fighter,” Air Force Mag., Oct., 38–42 (2009).

    Google Scholar 

  100. 100.

    T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, Collaborative mobile edge computing in “5G networks: New paradigms, scenarios, and challenges,” Electr. Prepr., (Apr. 11, 2017). https://doi.org/arxiv.org/pdf/1612.03184[cs.NI]

    Google Scholar 

  101. 101.

    A. Tudzarov and T. Janevski, “Functional architecture for 5G mobile networks,” Int. J. Adv. Sci. Technol. 3 (2), 65–78 (2011).

    Google Scholar 

  102. 102.

    M. Vaezi and Y. Zhang, Cloud Mobile Networks (Springer, 2017).

    Google Scholar 

  103. 103.

    T. Weilkiens, J. G. Lamm, S. Roth, and M. Walker, Model-Based System Architecture (Wiley, 2015).

    Google Scholar 

  104. 104.

    X. Wu, H. R. Sadjadpour, and J. J. Garcia-Luna-Aceves, “Modeling of topology evolutions and implication on proactive routing overhead in MANETs,” Comp. Commun. 31, 782–792 (2008).

    Article  Google Scholar 

  105. 105.

    R. Yadav, “Challenges and evolution of next generations wireless communication,” in Proc. Int. MultiConf. Engineers and Computer Scientists (IMECS 2017), Hong Kong, March 15–17, (2017) (IMECS, 2017).

    Google Scholar 

  106. 106.

    C. You, K. Huang, and H. Chae, “Energy efficient mobile cloud computing powered by wireless energy transfer,” IEEE J. Sel. Areas Commun. 34, 1757–1771 (2016).

    Article  Google Scholar 

  107. 107.

    X. Zhou, Z. Zhao, R. Li, Y. Zhou, T. Chen, Z. Niu, and H. Zhang, “Toward 5G: When explosive bursts meet soft cloud,” IEEE Network 28 (6), 12–17 (2014).

    Article  Google Scholar 

  108. 108.

    H. Zimmermann, “OSI Reference Model,” The ISO model of architecture for open systems interconnection,” IEEE Trans. Commun. 28, 425–432 (1980).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Sh. Levin.

Additional information

Original Russian Text © M.Sh. Levin, 2017, published in Informatsionnye Protsessy, 2017, Vol. 17, No. 3, pp. 172–187.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levin, M.S. On Combinatorial Models of Generations of Wireless Communication Systems. J. Commun. Technol. Electron. 63, 667–679 (2018). https://doi.org/10.1134/S1064226918060165

Download citation

Keywords

  • wireless communication
  • modular system
  • system generations
  • combinatorial models
  • improvement
  • combinatorial optimization