Advertisement

On Combinatorial Models of Generations of Wireless Communication Systems

  • M. Sh. Levin
Information Technology in Engineering Systems
  • 26 Downloads

Abstract

In this paper, the following issues are considered: (i) a brief review of wireless mobile technologies including their evolution (1G, 2G, 3G, 4G, 5G, and 6G system generations), (ii) the use of hierarchical combinatorial models for the description of wireless communication system generations, and (iii) the use of a twostage modular method for improving (predicting) the version of the 5G wireless system generation (based on the block pack problem). The presented examples illustrate the proposed approaches to modeling and improvemen of wireless communication systems.

Keywords

wireless communication modular system system generations combinatorial models improvement combinatorial optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Abrol and R. K. Jha, “Power optimization in 5G networks: a step towards green communication,” IEEE Access. 4, 1355–1374 (2016).CrossRefGoogle Scholar
  2. 2.
    A. Afuah, Innovation Management: Strategies, Implementation and Profits (Oxford Univ., Oxford, 2003).Google Scholar
  3. 3.
    A. Ahmed and E. Ahmed, “A survey on mobile edge computing,” in Proc. IEEE Int. Conf. Intell. Syst. Control (ISCO), Coimbatore, India, 2016 (IEEE, New York, 2016), pp. 1–8.Google Scholar
  4. 4.
    A. M. Akhtar, X. Wang, and L. Hanzo, “Synergistic spectrum sharing in 5G HetNets: A harmonized SDBEnabled approach,” IEEE Commun. Mag. 53, 40–47 (2016).CrossRefGoogle Scholar
  5. 5.
    I. F. Akyildiz, D. M. Gutierrez-Estevez, and E. C. Reyes, “The evolution to 4G cellular systems: LTE,” Adv. Phys. Commun. 3, 217–244 (2010).CrossRefGoogle Scholar
  6. 6.
    M. Andrew, “A strategic assessment of PLA theatre missile and ASAT capabilities,” Air Power Australia Analyses 7 (2) (2010).Google Scholar
  7. 7.
    J. Andrews, “The seven ways hetnets are a paradigm shift,” IEEE Commun. Mag. 51, 136–144 (2013).CrossRefGoogle Scholar
  8. 8.
    J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanli, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Barbarossa, S. Sardellitti, and P. D. Lorenzov, “Communicating while computing: Distributed mobile cloud computing over 5G heterogeneous networks,” IEEE Signal Process. Mag. 31, No. 6, 45–55 (2014).CrossRefGoogle Scholar
  10. 10.
    D. K. Barton, “Recent developments in Russian radar systems,” in Proc. of IEEE Int. Radar Conf., Washington, DC, USA. 1995 (IEEE, New York, 1995), pp. 340–346.Google Scholar
  11. 11.
    G. Berardinelli, K. I. Pedersen, T. B. Sorensen, and P. Mogensen, “Generalized DFT-Spread-OFDM as 5G waveform,” IEEE Commun. Mag. 54 (11), 99–105 (2016).CrossRefGoogle Scholar
  12. 12.
    R. Berezdivin, R. Breinig, and R. Topp, Next generation wireless communications concepts and technologies. IEEE Commun. Mag. 40 (3), 108–116 (2002).CrossRefGoogle Scholar
  13. 13.
    M. R. Bhala and A. V. Bhala, “Generations of mobile wireless technology: A survey,” Int. J. Comp. Appl. 5 (4), 26–32 (2010).Google Scholar
  14. 14.
    N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic, R. Sukhavasi, C. Patel, and S. Geirhofer, “Network densification: the dominant theme for wireless evolution into 5G,” IEEE Commun. Mag. 52 (2), 82–89 (2014).CrossRefGoogle Scholar
  15. 15.
    F. Boccardi, R. W. Health, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52 (2), 74–80 (2014).CrossRefGoogle Scholar
  16. 16.
    C. Bockelmann, N. Pratas, H. Nikopour, K. Au, T. Svensson, C. Stefanovic, P. Popovski, and A. Dekorsy, “Massive machine-type communications in 5G: physical and MA C-layer solutions,” IEEE Commun. Mag. 54 (9), 59–64 (2016).CrossRefGoogle Scholar
  17. 17.
    L. Bondan, C. R. P. Santos, and L. Z. Granville, “Management requirements for ClickOS-based network function virtualization,” in Proc. 10th Int. Conf. on Network and Service Management (CNSM), Rio de Janeiro, Brazil, Nov. 17–21, 2014 (IEEE, New York, 2014), pp. 447–450.Google Scholar
  18. 18.
    G. Boudreau, J. Panicker, N. Guo, R. Chang, N. Wang, and S. Vrzic, “Interference coordination and cancellation for 4G networks,” IEEE Commun. Mag. 47 (4), 74–81 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Bria, F. Gessler, O. Queseth, R. Stridth, M. Unbehaun, J. Wu, and J. Zendler, “4 generation wireless infrastructure: scenarios and research challenges,” IEEE Personal Commun. 8 (6), 25–31 (2001).CrossRefGoogle Scholar
  20. 20.
    W. Cheng-Xiang et al., “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52, 122–130 (2014).Google Scholar
  21. 21.
    S. Chiesa and M. Fioriti, “About feasibility of a 5th generation light fighter aircraft,” J. Mech. Engineering Automation. 4, 441–450 (2014).Google Scholar
  22. 22.
    W. H. Chin, Z. Fan, and R. Haines “Emerging technologies and research challenges for 5G wireless networks,” IEEE Wireless Commun. 21, 106–112 (2014).CrossRefGoogle Scholar
  23. 23.
    N. M. K. Chowdhury and P. Boutaba, “A survey of network virtualization. Computer Networks,” 54, 862–876 (2010).zbMATHCrossRefGoogle Scholar
  24. 24.
    J. Chuang and N. Sollenberger, “Beyong 3G: Wideband wireless data access based on OFDM and dynamic packet assignment,” IEEE Commun. Mag. 38, 78–87 (2000).CrossRefGoogle Scholar
  25. 25.
    E. Dahlman et al., “5G wireless access: requirements and realization,” IEEE Commun. Mag. 52 (12), 42–47 (2014).CrossRefGoogle Scholar
  26. 26.
    P. Demestichas, A. Georakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the horizon: key challenges for the radio-access network,” IEEE Vehicular Technol. Mag. 8 (3), 47–53 (2013).CrossRefGoogle Scholar
  27. 27.
    V. P. Efremov, “SA-12 system overview,” in Proc. Seminar at IEEE Radar Conf., Atlanta, GA, USA, Mar. 29–31, 1994 (IEEE, New York, 1994).Google Scholar
  28. 28.
    O. O. Fagbohun, “Comparative studies on 3G, 4G and 5G wireless technology,” IOSR J. Electron. Commun. Eng. 9 (3), 88–94 (2014).Google Scholar
  29. 29.
    N. Feamster, J. Rexford, and E. Zegura, “The road of SDN: an intellectual history of programmable networks,” ACM SIGCOMM Comput. Commun. Rev. 44 (2), 87–98 (2014).CrossRefGoogle Scholar
  30. 30.
    A. Ghosh, R. Ratasuk, B. Mondai, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Wireless Commun. 17 (3), 10–22 (2010).CrossRefGoogle Scholar
  31. 31.
    A. Ghosh, J. Zhang, J. G. Andrews, and R. Muhamed, Fundamentals of LTE (Prentice-Hall, 2011).Google Scholar
  32. 32.
    J. Gill and S. Singh, “Future prospects of wireless generations in mobile communication,” Asian J. Comp. Sci. Technol. 4 (2), 18–22 (2015).Google Scholar
  33. 33.
    A. Gohil and S. K. Patel, “5G technology of mobile communication: A survey,” in Proc. 2013 Int. Conf. on Intelligent Systems Processing (ISSP),Vallabh Vidyanagar, Anand, India, Mar. 1–2, 2013 (ISSP, 2013), pp. 288–292.Google Scholar
  34. 34.
    K. Goswami, K. Sahu, and A. Shukla, “Upcoming technologies: 5G and 6G,” in Proc. Nat. Conf. on Knowledge, Innovation in Technology and Engineering (NCKITE), Raipur, India, Apr. 10–11, 2015 (NCKITE, 2015), pp. 35–37.Google Scholar
  35. 35.
    J. Govil and J. Govil, “4G mobile communication systems: turns, trends and transition,” in Proc. Int. Conf. on Convergence Information Technology (ICCIT 2007),Gyeongju, Korea, Nov. 21–23, 2007 (IEEE, NewYork, 2007), pp. 13–18.CrossRefGoogle Scholar
  36. 36.
    B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualization: challenges and opportunities for innovation,” IEEE Commun. Mag. 53 (2), 90–97 (2015).CrossRefGoogle Scholar
  37. 37.
    S. F. Hasan, “5G communication technology,” in Emerging Trends in Communication Networks (Springer, 2014), pp. 59–69.Google Scholar
  38. 38.
    H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: state of the art, challenges, and implementation in next generation mobile networks (vEPC),” IEEE Networks 28 (6), 18–26 (2014).CrossRefGoogle Scholar
  39. 39.
    A. J. Hebert, “Fighter generations,” Air Force Mag., Sept., 32 (2008).Google Scholar
  40. 40.
    F. Hillebrand, GSM and UMTS, the Creation of Global Communications (Wiley, New York, 2001).CrossRefGoogle Scholar
  41. 41.
    S. Hossain, “5G wireless communication systems,” Am. J. Eng. Res. 2 (10), 344–353 (2013).Google Scholar
  42. 42.
    S. Y. Hui and K. H. Yeung, “Challenges in the migration to 4G mobile systems,” IEEE Commun. Mag. 41 (12), 54–59 (2003).CrossRefGoogle Scholar
  43. 43.
    A. Imran and A. Zoha, “Challenges in 5G: how to empower SON with big data for enabling 5G,” IEEE Network. 28, 27–33 (2014).CrossRefGoogle Scholar
  44. 44.
    T. Jiang, S. Mao, Z. Zhang, and D. Chen, (eds), Special issue on “Next Generation Wireless Communication Technologies,” Digital Commun. Networks 2 (4), 159–161 (2016).Google Scholar
  45. 45.
    M. Jo, T. Maksymyuk, B. Strykhalyuk, and C.-H. Cho, “Device-to-device-based heterogeneous radio access network architecture for mobile cloud computing,” IEEE Wireless Commun. 22 (3), 50–58 (2015).CrossRefGoogle Scholar
  46. 46.
    M. G. Kachhavay and A. P. Thakare, “5G technologyevolution and revolution,” Int. J. Comput. Sci. Mobile Comput. 3, 1080–1087 (2014).Google Scholar
  47. 47.
    E. A. Kadir, S. M. Shamsuddin, T. A. Rahman, and A. S. Ismail, “Big data network architecture and monitoring use wireless 5G technology,” Int. J. Adv. Soft Comput. Appl. 7 (1), 1–14 (2015).Google Scholar
  48. 48.
    A. u. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey of mobile cloud computing application models.” IEEE Commun. Surveys Tuts 16 (1), 393–413 (2014).CrossRefGoogle Scholar
  49. 49.
    R. Khutey, G. Rana, V. Dewangan, A. Tiwari, and A. Dewamngan, “Future of wireless technology G&7G,” Int. J. Electr. Electron. Res. 3, 583–585 (2015).Google Scholar
  50. 50.
    Y. K. Kim and R. Prasad, 4G Roadmap and Emerging Communication Technologies (Artech House, 2006).Google Scholar
  51. 51.
    D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proc. IEEE 103, 14–76 (2015).CrossRefGoogle Scholar
  52. 52.
    A. Kumar, Y. Liu, J. Sengupta, “Evolution of mobile wireless communication networks, 1G to 4G,” Int. J. Electron. & Commun. Technol. (IJECT) 1, 68–72 (2010).Google Scholar
  53. 53.
    S. Kumar, T. Agrawal, and P. Singh, “A future communication technology: 5G,” Int. J. Future Generation Commun. Networking 9, 303–310 (2016).CrossRefGoogle Scholar
  54. 54.
    K. Kumaravel, “Comparative study of 3G and 4G in mobile technology,” Int. J. Comput. Sci. 8, 256–263 (2011).Google Scholar
  55. 55.
    J. Kwak, Y. Kim, J. Lee, and S. Chong, “Dream: dynamic resource and task allocation for energy minimization in mobile cloud systems,” IEEE J. Select. Areas Commun. 33, 2510–2523 (2015).CrossRefGoogle Scholar
  56. 56.
    M. Sh. Levin, “Combinatorial evolution of composite systems,” in Proc. 16th Eur. Meeting on Cybern. and Syst. Res., Austria, 2002 (EMCSR, Vienna, 2002), Vol. 1, pp. 275–280.Google Scholar
  57. 57.
    M. Sh. Levin, Composite Systems Decisions (Springer-Verlag, 2006).Google Scholar
  58. 58.
    M. Sh. Levin, “Towards communication network development (structural system issues, combinatorial models),” in Proc. 2010 IEEE Region 8 Int. Conf. SIBIRCON-2010, Irkutsk, 2010 (IEEE, New York, 2010), Vol. 1, pp. 204–208.Google Scholar
  59. 59.
    M. Sh. Levin, “Towards combinatorial evolution of composite systems,” Expert Syst. Appl. 40, 1342–1351 (2013).CrossRefGoogle Scholar
  60. 60.
    M. Sh. Levin, Modular System Design and Evaluation (Sprigner-Verlag, 2015).CrossRefGoogle Scholar
  61. 61.
    M. Sh. Levin, “Note on evolution and forecasting of requirements: communications example,” Electr. Prepr., (May 22, 2017). https://doi.org/arxiv.org/abs/1705.07558[cs.NI] Google Scholar
  62. 62.
    M. Sh. Levin, “Towards combinatorial modeling of wireless technology generations,” Electr. Prepr. (Sep. 2. 2017). https://doi.org/arxiv.org/abs/1708.08996[cs.NI]
  63. 63.
    M. Sh. Levin, O. Kruchkov, O. Hadar, and E. Kaminsky, “Combinatorial systems evolution: example of standard for multimedia information,” Informatica 20, 519–538 (2009).zbMATHGoogle Scholar
  64. 64.
    M. Sh. Levin, A. Andrushevich, R. Kistler, and A. Klapproth, “Combinatorial evolution of ZigBee protocol,” in Proc. 2010 IEEE Region 8 Int. Conf. SIBIRCON-2010,Irkutsk, Russia, 2010, (IEEE, 2010), Vol. 1, pp. 314–319.Google Scholar
  65. 65.
    M. Sh. Levin, A. Andrushevich, R. Kistler, and A. Klapproth, “Combinatorial evolution and forecasting of communication protocol ZigBee,” Electr. Prepr., (Apr. 15, 2012). https://doi.org/arxiv.org/abs/1204.3259[cs.NI] Google Scholar
  66. 66.
    Y.-B. Lin, “OA&M for GSM network,” IEEE Network 11 (2), 46–57 (1997).CrossRefGoogle Scholar
  67. 67.
    A. Maeder, A. Ali, A. Bedekar, A. F. Cattoni, D. Chandramouli, S. Chandrashekar, L. Du, M. Hesse, C. Sartori, and S. Turtinen, “A scalable and flexible radio access network architecture for fifth generation mobile networks,” IEEE Commun. Mag. 54 (11), 16–23 (2016).CrossRefGoogle Scholar
  68. 68.
    P. Marsch, I. Da Silva, O. Bulakci, M. Tesanovic, S. E. El Ayoubi, T. Rosowski, A. Kaloxylos, and M. Boldi, “5G radio access network architecture: design guidelines and key considerations,” IEEE Commun. Mag. 54 (11), 24–32 (2016).CrossRefGoogle Scholar
  69. 69.
    Y. Mao, C. You, K. Huang, and K. B. Letaief, “Mobile edge computing: survey and research outlook,” Electr. Preprint (Jan. 11, 2017). https://doi.org/arxiv.org/abs/1701.01090[cs.IT] Google Scholar
  70. 70.
    A. Mehrotra, GSM System Engineering (Artech House, Boston, 1997).Google Scholar
  71. 71.
    H. Mehta, D. Patel, B. Joshi, and H. Modi, “0G to 5G mobile technology: A survey,” J. Basic Appl. Engineering Res. 1 (6), 56–60 (2014).Google Scholar
  72. 72.
    G. Miao and G. Song, Energy and Spectrum Efficient Wireless Network Design (Cambridge Univ. Press., Cambridge, 2014).Google Scholar
  73. 73.
    N. Michailow, M. Matthe, I. S. Gaspar, A. N. Caldevilla, L. L. Mendes, A. Festag, and G. Fettweis, “Generalized frequency division multiplexing for 5th generation cellular networks,” IEEE Trans. Commun. 62, 3045–3061 (2014).CrossRefGoogle Scholar
  74. 74.
    R. Mijumbi, J. Serrat, J. -L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba, Network function virtualization: state-of-the art and research challenges. IEEE Communications Surveys & Tutorials 18 (1), 236–262 (2016).CrossRefGoogle Scholar
  75. 75.
    R. N. Mitra and D. P. Agrawal, “5G mobile technology: A survey,” ICT Express 1 (3), 132–137 (2015).CrossRefGoogle Scholar
  76. 76.
    M. Mouly and M.-B. Pautet, The GSM System for Mobile Communications (Artech House, 1992).Google Scholar
  77. 77.
    S. Mumtaz et al., Direct mobile-to-mobile communication: paradigm for 5G. IEEE Wireless Commun. 21 (5), 14–23 (2014).CrossRefGoogle Scholar
  78. 78.
    O. Munoz, A. P-Iserte, and J. Vidal, “Joint optimization of radio and computational resources for multicell mobile-edge computing,” IEEE Trans. Signal Info. Process. Over Networks 1 (2), 89–103 (2015).MathSciNetCrossRefGoogle Scholar
  79. 79.
    G. Naik, V. Aigal, P. Sehgal, and J. Poojari, “Challenges in the implementation of fourth generation wireless systems,” Int. J. Engineering Res. Appl. 2 (2), 1353–1355 (2012).Google Scholar
  80. 80.
    B. A. A. Nunes, M. Mendinca, X.-N. Nguen, K. Obraszka, and T. Turletti, “A survey of softwaredefined networking: past, present, and future of programmable networks,” IEEE Commun. Surv. Tutor 16, 1617–1634 (2014).CrossRefGoogle Scholar
  81. 81.
    A. Osseiran et al., “Scenarios for 5G mobile and wireless communications: The vision of the METIS project,” IEEE Commun. Mag. 52 (5), 26–35 (2014).CrossRefGoogle Scholar
  82. 82.
    J. Parikh and A. Basu, “LTE advanced: The 4G mobile broadband technology,” Int. J. Comput. Appl. 13 (5), 17–21 (2011).Google Scholar
  83. 83.
    S. Patel, C. Malhar, and K. Kapadiya, “5G: Future Mobile Technology–Vision 2020,” Int. J. Comput. Appl. 54 (17), 6–10 (2012).Google Scholar
  84. 84.
    S. Patil, V. Patil, and P. Bhat, “A review on 5G technology. Int. J. of Engineering and Innovative Technology,” 1, 26–30 (2012).Google Scholar
  85. 85.
    K. Pedersen, P. Morgensen, and T. Kolding, “Overview of QoS options for HSDPA,” IEEE Commun. Mag. 44 (7), 100–105 (2006).CrossRefGoogle Scholar
  86. 86.
    M. Peng, Y. Li, Z. Zhao, and C. Wang, “System architecture and key technologies for 5G heterogeneous cloud radio access networks,” IEEE Network 29 (2), 6–14 (2015).CrossRefGoogle Scholar
  87. 87.
    P. Pirinen, “A brief overview of 5G research activities,” in Proc. 1st Int. Conf. on 5G for Ubiquitous Connectivity (5GU), Akaslompolo, Finland, Nov. 26–27, 2014 (IEEE, New York, 2014), pp. 17–22.Google Scholar
  88. 88.
    V. Rahnema, “Overview of the GSM systems and protocol architecture,” IEEE Commun. Mag. 21 (4), 92–100 (1993).CrossRefGoogle Scholar
  89. 89.
    T. S. Rappaport et al., “Millimeter wave mobile communications for 5G cellular: It will work,” IEEE Access 1, 335–349 (May 2013).Google Scholar
  90. 90.
    K. Raza and M. Turner, Cisco Network Topology and Design (Cisco Press, 2002).Google Scholar
  91. 91.
    D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, “Mobile-edge computing architecture: The role of MEC in the Internet of Things,” IEEE Consum. Electron. Mag. 5 (4), 84–91 (2016).CrossRefGoogle Scholar
  92. 92.
    P. Sharma, “Evolution of mobile wireless communication networks–1G to 5G as well future prospective of next generation communication network,” Int. J. Comput. Sci. Mobile Comput. 2 (8), 47–53 (2013).Google Scholar
  93. 93.
    M. M. Siddiqui, “Vision of 5G communication,” in High Performance Architecture and Grid Computing (Springer, 2011), pp. 252–256.CrossRefGoogle Scholar
  94. 94.
    A. P. Singh, S. Nigam, and N. K. Gupta, “A study of next generation wireless network 6G,” Int. J. Innovative Res. Comput. Commun. Engineering. 4, 871–874 (2007).Google Scholar
  95. 95.
    S. Singh and P. Singh, “Key concepts and network architecture for 5G mobile networks,” Int. J. Sci. Res. Engineering & Technol. 1, 165–170 (2012).Google Scholar
  96. 96.
    S. Singh and R. K. Jha, “A survey on software defined networking: Architecture for next generation network,” J. Network Syst. Management 25, 321–374 (2017).CrossRefGoogle Scholar
  97. 97.
    M. Suryanegara and K. Miyazaki, “Technological changes in the innovation system towards 4G mobile service,” Int. J. Technol., Policy & Management 10, 375–394. (2010).CrossRefGoogle Scholar
  98. 98.
    J. Thompson, X. Ge, H. C. Wu, R. Irmer, H. Jiang, G. Fettweis, and S. Alamouti, “5G wireless communication systems: prospects and challenges,” IEEE Commun. Mag. 52 (2), 62–64 (2014).CrossRefGoogle Scholar
  99. 99.
    J. A. Tirpak, “The sixth generation fighter,” Air Force Mag., Oct., 38–42 (2009).Google Scholar
  100. 100.
    T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, Collaborative mobile edge computing in “5G networks: New paradigms, scenarios, and challenges,” Electr. Prepr., (Apr. 11, 2017). https://doi.org/arxiv.org/pdf/1612.03184[cs.NI] Google Scholar
  101. 101.
    A. Tudzarov and T. Janevski, “Functional architecture for 5G mobile networks,” Int. J. Adv. Sci. Technol. 3 (2), 65–78 (2011).Google Scholar
  102. 102.
    M. Vaezi and Y. Zhang, Cloud Mobile Networks (Springer, 2017).CrossRefGoogle Scholar
  103. 103.
    T. Weilkiens, J. G. Lamm, S. Roth, and M. Walker, Model-Based System Architecture (Wiley, 2015).CrossRefGoogle Scholar
  104. 104.
    X. Wu, H. R. Sadjadpour, and J. J. Garcia-Luna-Aceves, “Modeling of topology evolutions and implication on proactive routing overhead in MANETs,” Comp. Commun. 31, 782–792 (2008).CrossRefGoogle Scholar
  105. 105.
    R. Yadav, “Challenges and evolution of next generations wireless communication,” in Proc. Int. MultiConf. Engineers and Computer Scientists (IMECS 2017), Hong Kong, March 15–17, (2017) (IMECS, 2017).Google Scholar
  106. 106.
    C. You, K. Huang, and H. Chae, “Energy efficient mobile cloud computing powered by wireless energy transfer,” IEEE J. Sel. Areas Commun. 34, 1757–1771 (2016).CrossRefGoogle Scholar
  107. 107.
    X. Zhou, Z. Zhao, R. Li, Y. Zhou, T. Chen, Z. Niu, and H. Zhang, “Toward 5G: When explosive bursts meet soft cloud,” IEEE Network 28 (6), 12–17 (2014).CrossRefGoogle Scholar
  108. 108.
    H. Zimmermann, “OSI Reference Model,” The ISO model of architecture for open systems interconnection,” IEEE Trans. Commun. 28, 425–432 (1980).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations