Skip to main content
Log in

Generalization of the Fast Hough Transform for Three-Dimensional Images

  • Mathematical Models and Computational Methods
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

This study is devoted to the analysis of algorithms of calculating the fast Hough transform for two- and three-dimensional images. A method for calculating the fast Hough transform (FHT) for straight lines in a three-dimensional image is proposed; its space and time complexity are Θ(n4), where n is the characteristic linear size of the input image. The FHT algorithms for approximation in two- and three-dimensional spaces are considered, and properties of the accuracy and completeness of the corresponding sets of dyadic patterns are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. V. C. Hough, “Machine analysis of bubble chamber pictures,” in Proc. Int. Conf. on High Energy Accelerators and Instrumentation, Geneva, Sept. 14–19, 1959 (Int. Union Pure & Appl. Phys., CERN, 1959).

    Google Scholar 

  2. P. Mukhopadhyay and B. Chaudhuri, “A survey of Hough transform,” Pattern Recogn. 48, 993–1010 (2015).

    Article  Google Scholar 

  3. A. Shehata, S. Mohammad, M. Sameer, and E. Rahab, “A Survey on hough transform, theory, techniques and applications,” ArXiv, Preprint 1502.02160.

  4. L. Xu, E. Oja, and P. Kultanan, “A new curve detection method: Randomized Hough transform (RHT),” Pattern Recogn., No. 11, 331–338 (1990).

    Article  MATH  Google Scholar 

  5. M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,” Comm. ACM 24, 381–395 (1981).

    Article  MathSciNet  Google Scholar 

  6. M. Jiri, C. Galambos, and J. Kittler, “Robust detection of lines using the progressive probabilistic hough transform,” Comp. Vision Image Understand. 78 (1), 119–137 (2000).

    Article  Google Scholar 

  7. F. A. Limberger and M. M. Oliveira, “Real-time detection of planar regions in unorganized point clouds,” Pattern Recogn. 48, 2043–2053 (2014).

    Article  Google Scholar 

  8. M. L. Brady and Yong Whanki, “Fast parallel discrete approximation algorithms for the Radon transform,” in Proc. 4th Ann. ACM Symp. on Parallel Algorithms and Architectures, San Diego, CA, USA, June 29–July 01, 1992 (ACM, 1992).

    Google Scholar 

  9. W. A. Gotz, Eine Schnelle Diskrete Radon Transformation Basierend auf Rekursiv Definiertern Digitalen Geraden, Dissertation (Univ. Insbruck, Insbruck, 1993).

    Google Scholar 

  10. J. E. Vuillemin, “Fast linear Hough transform,” in Proc. IEEE Conf. on Application-Specific Array Processors, San Francisco, CA, USA, 1994 (IEEE Comput. Soc., New York, 1994), pp. 91–99.

    Google Scholar 

  11. S. M. Karpenko, D. P. Nikolaev, P. P. Nikolaev, and V. V. Postnikov, “Fast Hough Transform with Controlled Robustness,” in Artificial Intellectual Systems and Intellectual CAD. Proc. Int. Conf. IEEE AIS’04 & CAD-2004, Divnomorskoe, Sept. 3–10, 2004 (Fizmatlit, Moscow, 2004), Vol. 2, pp. 303–309.

    Google Scholar 

  12. M. T. Frederick, N. A. VanderHorn, and A. K. Somani, “Real-time H/W implementation of the approximate discrete Radon transform,” in Proc. 16th IEEE Int. Conf. IEEE on Application-Specific Systems, Architectures and Processors, Samos, Greece, July 23–25, 2005 (IEEE, 2005), pp. 399–404.

    Google Scholar 

  13. V. V. Arlazarov, A. E. Zhukovskii, V. E. Krivtsov, D. P. Nikolaev, and D. V. Polevoi, “Analysis of the features of application of stationary and mobile little digital video cameras for recognition of documents,” Inf. Tekhnol. Vychisl. Sist. 3, 71–81 (2014).

    Google Scholar 

  14. D. Krokhina, V. Blinov, S. Gladilin, I. Tarhanov, and V. Postnikov, “Fast roadway detection using car cabin video camera,” in Proc. 8th Int. Conf. on Machine Vision, (ICMV, 2015); Proc. SPIE 9875, pp. 98751F1–5 (2015).

    Article  Google Scholar 

  15. D. P. Nikolaev, S. M. Karpenko, I. P. Nikolaev, and P. P. Nikolayev, “Hough transform: underestimated tool in the computer vision field,” in Proc. 22nd Eur. Conf. on Modeling and Simulation, Nicosia, Cyprus, June 3–6, 2008 (ECMS, 2008), pp. 238–246.

    Google Scholar 

  16. V. E. Prun, A. V. Buzmakov, D. P. Nikolaev, M. V. Chukalina, and V. E. Asadchikov, “Computationally efficient version of the algebraic method of computer tomography,” Avtomat. Telemekh., No. 10, 86–97 (2013).

    MathSciNet  MATH  Google Scholar 

  17. I. A. Kunina, S. A. Gladilin, and D. P. Nikolaev, “Blind compensation of the radial distortion on a single image with the use of the fast Hough transform,” Komp’yut. Opt. 40, 395–403 (2016).

    Google Scholar 

  18. E. Ershov, A. Terekhin, S. Karpenko, D. Nikolaev, and V. Postnikov, “Fast 3D Hough transform computation,” in Proc. 30th Eur. Conf. on Modeling and Simulation, 2016 (ECMS, 2016), pp. 227–230.

    Google Scholar 

  19. D. Rogers, Procedural Elements for Computer Graphics (McGraw-Hill, New York, 1985; Mir, Moscow, 1989).

    Google Scholar 

  20. E. I. Ershov, E. A. Shvets T. M. Khanipov, and D. P. Nikolaev, “Generation algorithms of fast generalized hough transform,” in Proc. 30th Eur. Conf. on Modeling and Simulation (ECMS, 2017), Budapest, May 23–26, 2017 (ECMS, 2017), pp. 534–538.

    Google Scholar 

  21. E. Ershov, A. Terekhin, D. Nikolaev, V. Postnikov, and S. Karpenko, “Fast Hough transform analysis: pattern deviation from line segment,” in Proc. 8th Int. Conf. on Machine Vision (ICMV 2015), Barcelona, Spain, Nov. 19–20, 2015, (Int. Soc. Optics and Photonics, 2015), pp. 987509–987509.

    Google Scholar 

  22. I. M. Gel’fand, S. G. Gindikin, and M. I. Graev, Selected Problems of Integral Geometry (Dobrosvet, Moscow, 2000).

    MATH  Google Scholar 

  23. P. V. Bezmaternykh, D. V. Vylegzhanin, S. A. Gladilin, and D. P. Nikolaev, “Generative recognition of 2D bar codes,” Iskusstv. Intellekt i Prinyatie Reshenii, No. 4, 63–69 (2010).

    Google Scholar 

  24. E. I. Ershov and S. M. Karpenko, “Fast Hough Transform and approximation properties of dyadic patterns,” arXiv: 2096256.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Ershov.

Additional information

Original Russian Text © E.I. Ershov, A.P. Terekhin, D.P. Nikolaev, 2017, published in Informatsionnye Protsessy, 2017, Vol. 17, No. 4, pp. 294–308.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershov, E.I., Terekhin, A.P. & Nikolaev, D.P. Generalization of the Fast Hough Transform for Three-Dimensional Images. J. Commun. Technol. Electron. 63, 626–636 (2018). https://doi.org/10.1134/S1064226918060074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226918060074

Keywords

Navigation