Skip to main content
Log in

On the Condition for Transformation of a Fast Surface Wave into a Slow Surface Wave

  • Electrodynamics and Wave Propagation
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Surface plasmons (polaritons) along the boundary between vacuum and a dissipative half-space with given complex permittivity, including the case of placing an electrically thin dielectric layer (system of layers) on the boundary, are considered. Conditions for transformation of a fast gliding Zenneck surface wave (polariton) into a slow wave (slow surface plasmon) are considered. The behavior of the group velocity and the energy velocity of motion (transfer) in such structures are analyzed. The reflection coefficient of the Zenneck wave along the sea for the ice pack of a given thickness is determined. It has been shown that rigorous solution of the Sommerfeld problem by means of numerical calculation of integrals in the near zone allows obtaining the solution of the inverse problem of the structure of the surface region on the basis of redundant experimental data on components of the electromagnetic field on the surface at different ranges from the antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Vainshtein, Electromagnetic Waves, 2nd ed. (Radio i Svyaz’, Moscow, 1988) [in Russian].

    Google Scholar 

  2. M. V. Davidovich, Gliding and Leakage improper waves—the Analysis of Dissipative Dispersion Equations and the Zenneck Wave (Saratov. Gos. Univ., Saratov, 2014) [in Russian].

    Google Scholar 

  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, New York, 2007; RKhD, Moscow–Izhevsk, 2011).

    Google Scholar 

  4. V. V. Shevchenko, J. Radioelektron., No. 7 (2013). https://doi.org/jre.cplire.ru/jre/jul13/7/text.html.

  5. V. V. Shevchenko, J. Commun. Technol. Electron. 60, 335 (2015).

    Article  Google Scholar 

  6. A. V. Kukushkin, A. A. Rukhadze, and K. Z. Rukhadze, Usp. Fiz. Nauk 182, 1205 (2012).

    Article  Google Scholar 

  7. G. T. Markov and A. F. Chaplin, Excitation of Electromagnetic Waves (Radio i Svyaz’, Moscow, 1983) [in Russian].

    Google Scholar 

  8. J. Zenneck, Ann. Physik. Sept. 23, 846 (1907).

    Article  Google Scholar 

  9. D. G. Baranov, A. P. Vinogradov, K. R. Simovskii, I. S. Nefedov, and S. A. Tret’yakov, JETP 114, 568 (2012).

    Article  Google Scholar 

  10. M. V. Davidovich, JETP 123, 928 (2016).

    Article  Google Scholar 

  11. I. S. Nefedov, C. A. Valagiannopoulos, and L. Melnikov, J. Opt. 15, 114003 (2013).

    Article  Google Scholar 

  12. V. V. Shevchenko, Usp. Fiz. Nauk 177, 301 (2007).

    Article  Google Scholar 

  13. V. V. Shevchenko, J. Commun. Techn. Electron. 49, 639 (2004).

    Google Scholar 

  14. V. V. Shevchenko, J. Commun. Techn. Electron. 50, 1260 (2005).

    Google Scholar 

  15. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Phys. Rev. E 67, 057602 (2003).

    Article  Google Scholar 

  16. N. P. Balabukha, A. A. Basharin, and V. N. Semenenko, J. Commun. Technol. Electron. 54, 898 (2009).

    Article  Google Scholar 

  17. N. P. Balabukha, A. A. Basharin, and V. N. Semenenko, JETP Letters 89, 500 (2009).

    Article  Google Scholar 

  18. A. A. Basharin and N. L. Men’shikh, J. Radioelektron., No. 11 (2010). https://doi.org/jre.cplire.ru/iso/nov10/2/text.html).

  19. V. V. Shevchenko, J. Commun. Techn. Electron. 55, 986 (2010).

    Article  Google Scholar 

  20. V. V. Anenkov and V. V. Shevchenko, J. Commun. Technol. Electron. 56, 1186 (2011).

    Article  Google Scholar 

  21. A. A. Basharin, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Opt. Express 20, 12752 (2012).

    Article  Google Scholar 

  22. A. A. Basharin and N. L. Menshikh, Appl. Phys. A 106, 517 (2012).

    Article  Google Scholar 

  23. K.-Y. Kim, J. Jung, and J. Kim, arXiv:1007.0396.

  24. V. P. Mal’tsev and A. D. Shatrov, J. Commun. Technol. Electron. 57, 170 (2012).

    Article  Google Scholar 

  25. D. V. Valovik, PIERS ONLINE 7, 721 (2011).

    Google Scholar 

  26. A. P. Anyutin and A. D. Shatrov, J. Commun. Technol. Electron. 58, 417 (2013)

    Article  Google Scholar 

  27. A. D. Shatrov, J. Commun. Technol. Electron. 52, 1324 (2007).

    Article  Google Scholar 

  28. P. Tournois and V. Laude, Opt. Com. 137, 41 (1997).

    Article  Google Scholar 

  29. E. Yu. Al’tshuler, M. V. Davidovich, and Yu. V. Stefyuk, J. Commun. Technol. Electron. 55, 98 (2010).

    Article  Google Scholar 

  30. M. V. Davidovich, Iterative Methods for Solution of Electrodynamic Problems (Saratov. Gos. Univ., Saratov, 2014) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Davidovich.

Additional information

Original Russian Text © M.V. Davidovich, 2018, published in Radiotekhnika i Elektronika, 2018, Vol. 63, No. 6, pp. 499–506.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidovich, M.V. On the Condition for Transformation of a Fast Surface Wave into a Slow Surface Wave. J. Commun. Technol. Electron. 63, 497–504 (2018). https://doi.org/10.1134/S1064226918060050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226918060050

Navigation