Skip to main content
Log in

Dielectric Loss in the Polymer–Semiconductor–Composite System with Allowance for Nonlinear Dependence of Electric Characteristics on Temperature Resulting from Microwave Irradiation

  • Radio Phenomena in Solids and Plasma
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

An electrothermophysical model that makes it possible to estimate dielectric loss and predict energy-dissipation characteristics in dielectric materials is proposed. Heat and mass transfer is numerically simulated in the presence of microwave irradiation of an electronic device (polymer–semiconductor–composite system) with allowance for local heat liberation and nonlinear dependence of dielectric characteristics on temperature. Distributions of permittivity and tangent of dielectric loss with respect to thickness of the system under study are presented for a typical interval of variations in the parameters of electromagnetic radiation. It is demonstrated that dissipation of electromagnetic energy leads to a significant (by a factor of 1.6) increase in the tangent of dielectric loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Pleshivtsev, T. I. Gradova, and M. B. Orekhov, Elektromagn. Volny Elektron. Sist. 20 (4), 61 (2015).

    Google Scholar 

  2. V. D. Dobykin, V. V. Golikov, and V. O. Vedyashkin, Radiotekh. Elektron. (Moscow) 57, 935 (2012).

    Google Scholar 

  3. O. A. Dotsenko, D. V. Vagner, O. A. Kochetkova, Izv. Vyssh. Uchebn. Zaved. Fiz. 56 (8-2), 260 (2013).

    Google Scholar 

  4. V. F. Nikitin, N. N. Smirnov, M. N. Smirnova, and V. V. Tyurenkova, Vopr. Oboron. Tekh., Ser. 16: Tekh. Sredstva Protivodeyst. Terrorizmu, Nos. 1–2, 70 (2015).

    Google Scholar 

  5. G. V. Kuznetsov and E. V. Kravchenko, Inzh.-Fiz. Zh. 88, 1336 (2015).

    Google Scholar 

  6. A. A. Sasunkevich, L. N. Sorokin, and V. G. Usychenko, J. Commun. Technol. Electron. 58, 578 (2013).

    Article  Google Scholar 

  7. A. V. Klyuchnik, Yu. A. Pirogov, and A. V. Solodov, J. Radioelektron., No. 1 (2013). http://jre.cplire.ru/jre/jan13/18/text.pdf.

  8. S. A. Mesheryakov, J. Commun. Technol. Electron. 59, 169 (2014).

    Article  Google Scholar 

  9. I. V. Antonets, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 58, 1103 (2013).

    Article  Google Scholar 

  10. D. A. Usanov, S. A. Nikitov, A. V. Skripal’, M. Yu. Kulikov, and D. V. Ponomarev, J. Commun. Technol. Electron. 57, 209 (2012).

    Article  Google Scholar 

  11. Reference Book on Electrotechnical Materials in 3 volumes, Ed. by Yu. V. Koritskii (Energiya, Moscow, 1974), Vol. 1.

    Google Scholar 

  12. J. Krupka, J. Breeze, N. Alford, et al., in Proc. 16th Int. Conf. Microwaves, Radar and Wireless Communications (MIKON), Krakov, May 22–24, 2006 (IEEE, NewYork, 2006), p. 1097.

    Google Scholar 

  13. V. V. Baranovskii and G. M. Dulitskaya, Layered Plastics for Electrotechnical Applications (Energiya, Moscow, 1976), pp. 283–284.

    Google Scholar 

  14. E. Timoshenko and E. Kravchenko, MATEC Web Conf. 37, 01058 (2015).

    Article  Google Scholar 

  15. M. Yildirim, C. Sahin, S. Altindal, and P. Durmus, J. Electron. Mater. 46, 1895 (2017).

    Article  Google Scholar 

  16. R. R. Mishra and A. K. Sharma, Composites. Pt. A: Appl. Sci. and Manufacturing 81, 78 (2016).

    Article  Google Scholar 

  17. V. A. Sergeev and A. M. Khodakov, J. Commun. Technol. Electron. 60, 1328 (2015).

    Article  Google Scholar 

  18. S. A. Mesheryakov and A. V. Berdyshev, J. Commun. Technol. Electron. 58, 1088 (2013).

    Article  Google Scholar 

  19. A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1983) [in Russian].

    MATH  Google Scholar 

  20. V. M. Paskonov, V. I. Polezhaev, and L. A. Chudov, Numerical Simulation of Heat and Mass Exchange (Nauka, Moscow, 1984).

    MATH  Google Scholar 

  21. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, Khim. Fiz. 30 (12), 35 (2011).

    Google Scholar 

  22. G. V. Kuznetsov and M. A. Sheremet, Int. J. Heat Mass Transfer 53 (1-3), 163 (2010).

    Article  Google Scholar 

  23. V. K. Kryzhanovskii, V. V. Burlov, A. D. Panimatchenko, and Yu. V. Kryzhanovskaya, Technical Properties of Polymers: Educational Handbook, Ed. by V. K. Kryzhanovskii (Professiya, St. Petersburg, 2005) [in Russian].

  24. G. M. Bartenev and Yu. V. Zelenev, Physics and Mechanics of Polymers (Vysshaya Shkola, Moscow, 1983) [in Russian].

    Google Scholar 

  25. M. F. Arif, F. Meraghni, Y. Chemisky, et al., Composites. Pt. B: Engineering 58, 487 (2013).

    Article  Google Scholar 

  26. I. Carrascal, J. A. Casado, J. A. Polanco, and F. Gutierrez-Solana, Polym. Compos. 26, 580 (2005).

    Article  Google Scholar 

  27. N. Shiwakoti, A. Bobby, K. Asokan, and B. Antony, “Materials Sci. in Semicond. Process.,” 42, 378 (2016).

    Article  Google Scholar 

  28. M. S. Mattsson, G. A. Niklasson, K. Forsgren, and A. Hårsta, J. Appl. Phys. 85, 2185 (1999).

    Article  Google Scholar 

  29. G. V. Kuznetsov, E. V. Kravchenko, and N. A. Pribaturin, Elektrotekhnika, No. 4, 60 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kravchenko.

Additional information

Original Russian Text © G.V. Kuznetsov, E.V. Kravchenko, N.A. Pribaturin, 2018, published in Radiotekhnika i Elektronika, 2018, Vol. 63, No. 4, pp. 372–378.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, G.V., Kravchenko, E.V. & Pribaturin, N.A. Dielectric Loss in the Polymer–Semiconductor–Composite System with Allowance for Nonlinear Dependence of Electric Characteristics on Temperature Resulting from Microwave Irradiation. J. Commun. Technol. Electron. 63, 381–387 (2018). https://doi.org/10.1134/S106422691804006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422691804006X

Navigation