Ideal Quantum Wires in a Magnetic Field: Self-Organization Energy, Critical Sizes, and Controllable Conductivity

  • A. M. Mandel’
  • V. B. Oshurko
  • G. I. Solomakho
  • K. G. Solomakho


The concept of an ideal quantum wire as a one-dimensional heterostructure whose spectrum contains exactly one bound level of the transverse dimension-quantized motion is introduced. The admissible range of the radii of such a wire is calculated. It is shown that only the quantization of longitudinal levels of motion makes it possible to calculate the energy released (absorbed) upon the fusion of two wires of the same material. In the traditional approach of a continuous longitudinal spectrum, this effect cannot be determined in principle. The influence of a longitudinal magnetic field on the spectrum of ideal wires is considered. It is established that a quantizing magnetic field destroys the unique level with negative energy (relative to the bottom of the continuous spectrum of the environment) but creates a family of positive bound Landau levels. In this case, the density of states in the wire is completely determined by the magnetic field, which makes it possible to control its spectrum and conductivity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Ledentsov, V. M. Ustinov, V. A. Shchukin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 385 (1998).Google Scholar
  2. 2.
    A. Ya. Shik, L. G. Bakueva, S. F. Musikhin, and S. A. Rykov, Physics of Low-Dimensional Systems (Nauka, St. Petersburg, 2001) [in Russian].Google Scholar
  3. 3.
    A. A. Barybin, V. I. Tomilin, and V. I. Shapovalov, Physicotechnological Grounds of Macro-, Micro-, and Nanoelectronics (Fizmatlit, Moscow, 2011) [in Russian].Google Scholar
  4. 4.
    M. Peshkin and A. Tonomura, The Aharonov–Bohm Effect (Springer-Verlag, Berlin, 1989).CrossRefGoogle Scholar
  5. 5.
    G. N. Afanas’ev, “Old and new problems in the theory of the Aharonov–Bohm Effect,” Fiz. Elem. Chastits At. Yadra 21, 172 (1990).Google Scholar
  6. 6.
    L. Hackermüller, K. Hornberger, and B. Brezger, et al., Lett. Nature 427, 711 (2004).CrossRefGoogle Scholar
  7. 7.
    D. Bowmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).CrossRefGoogle Scholar
  8. 8.
    Y. Kondo and K. Takayanagy, Phys. Rev. Lett. 79, 3455 (1997).CrossRefGoogle Scholar
  9. 9.
    J. Burki, C. A. Stafford, and D. L. Stein, Phys. Rev. Lett. 95, 090601 (2005).CrossRefGoogle Scholar
  10. 10.
    V. Schmidt, J. V. Wittemann, S. Senz, and U. Gosele, Adv. Mater. 21, 2681 (2009).CrossRefGoogle Scholar
  11. 11.
    M. M. Rojo, O. C. Calero, and A. F. Lopeandia, et al., Nanoscale, No. 5, 11526 (2013).CrossRefGoogle Scholar
  12. 12.
    V. L. Popov, Mechanics of Contact Interaction and Physics of Friction (Fizmatlit, Moscow, 2013) [in Russian].Google Scholar
  13. 13.
    A. M. Mandel’, V. B. Oshurko, G. I. Solomakho, et al., Usp. Sovr. Radioelektron., No. 8, 18 (2015).Google Scholar
  14. 14.
    V. P. Kurbatsky, A. V. Korotun, A. V. Babich, and V. V. Pogosov, Phys. Solid State 51, 2520 (2009).CrossRefGoogle Scholar
  15. 15.
    V. A. Harutyunyan, Phys. Solid State 52, 1744 (2010).CrossRefGoogle Scholar
  16. 16.
    S. N. Grigor’ev, A. M. Mandel’, V. B. Oshurko, and G. I. Solomakho, Opt. Zh. 82, (5), 3 (2015).Google Scholar
  17. 17.
    S. N. Grigor’ev, A. M. Mandel’, V. B. Oshurko, and G. I. Solomakho, Opt. Zh. 82, (5), 11 (2015).Google Scholar
  18. 18.
    A. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Dispersion, Reactions, and Disintegrations in the Nonrelativistic Quantum Mechanics (Nauka, Moscow, 1966) [in Russian].Google Scholar
  19. 19.
    A. M. Mandel’, V. B. Oshurko, and G. I. Solomakho, Elektromagn. Volny Elektron. Sist., No. 6, 67 (2014).Google Scholar
  20. 20.
    A. M. Mandel’, V. B. Oshurko, G. I. Solomakho, and A. A. Sharts, J. Commun. Techn. Electron. 60, 1117 (2015).CrossRefGoogle Scholar
  21. 21.
    S. N. Grigor’ev, A. M. Mandel’, V. B. Oshurko, and G. I. Solomakho, Tech. Phys. Lett. 24, 1176 (2011).CrossRefGoogle Scholar
  22. 22.
    C. Pryor, M. Flatte, J. Pingenot, and D. Amrit, g-Factor in Quantum Dots (2007). online/spintr06/pryor/pdf/Pryor_KITP.pdf.Google Scholar
  23. 23.
    V. N. Rodionov, G. A. Kravtsova, and A. M. Mandel’, Teor. Mat. Fiz. 164, 157 (2010).CrossRefGoogle Scholar
  24. 24.
    A. I. Ansel’m, Introduction to the Theory of Semiconductors (Nauka, Moscow, 1978) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. M. Mandel’
    • 1
  • V. B. Oshurko
    • 1
  • G. I. Solomakho
    • 1
  • K. G. Solomakho
    • 1
  1. 1.Moscow State Technical University StankinMoscowRussia

Personalised recommendations