Scanning Thermal Imaging Device Based on a Domestic Photodetector Device

  • I. I. Kremis
  • V. S. Kalinin
  • V. N. Fedorinin
  • Yu. M. Korsakov
  • K. P. Shatunov
Articles from the Russian Journal Prikladnaya Fizika


The results of the development of a thermal imaging device based on the FEM10M photodetector produced by the Orion Research and Production Association are presented. As a result of the implementation of measures for improvement of the TPK-Z thermal imaging camera so as to comply with a domestic photodetector, the TPK-ZR thermal imaging device based on a domestic multirow array was developed, tuned, and tested. The minimum allowed temperature difference (MATD) and noise equivalent temperature difference (NETD) characteristics of the device are at least as good as the corresponding characteristics of a thermal imager using a foreign photodetector. The complex of image processing algorithms used in the TPK-ZR device makes it possible to obtain thermal images whose quality is not worse then the quality of the images obtained with the TPK-Z device. Further development of the obtained result can be implementation of a series of measures aimed at achieving full automation of calibration processes in the thermal imager.


filtering two-point correction thermal imager 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Borzov, V. I. Kozik, and O. I. Potaturkin, Izv. Vyssh. Uchebn. Zaved., Priborostr. 52 (6), 11–17 (2009).Google Scholar
  2. 2.
    S. I. Zhegalov, V. N. Solyakov, and V. G. Fetyukhina, Prikl. Fiz., No. 2, 80 (2011).Google Scholar
  3. 3.
    S. M. Borzov, V. I. Kozik, and A. S. Feoktistov, Izv. Vyssh. Uchebn. Zaved., Priborostr. 56 (6), 47–50 (2013).Google Scholar
  4. 4.
    I. I. Kremis, “Electronic system of visualization of the infrared image for matrix thermal imagers,” RF Useful Model Patent No. 98311, Byull. Izobret., No. 28, (2010).Google Scholar
  5. 5.
    I. I. Kremis, Prikl. Fiz., No. 4, 91 (2010).Google Scholar
  6. 6.
    I. I. Kremis, Naukoemk. Tekhnol. 11 (2), 59 (2010).Google Scholar
  7. 7.
    I. I. Kremis, “Method for processing of the photodetector signals and the device for its implementation,” RF Patent No. 2423016, Byull. Izobret., No. 18, (2011).Google Scholar
  8. 8.
    D. L. Baliev and K. O. Boltar, Prikl. Fiz., No. 3, 57 (2015).Google Scholar
  9. 9.
    G. Yu. Sidorov, I. V. Sabinina, V. V. Vasil’ev, et al., in Proc. Conf. Fotonika-2015, Novosibirsk, Oct. 12–16, 2015 (Inst. Fiz. Poluprov. (IFP) SO RAN, Novosibirsk, 2015), p. 138.Google Scholar
  10. 10.
    K. V. Kozlov and P. A. Kuznetsov, Prikl. Fiz., No. 3, 61 (2015).Google Scholar
  11. 11.
    V. V. Vasil’ev, A. V. Predein, V. S. Varavin, et al., Opt. Zh. 76 (12), 30–35 (2009).Google Scholar
  12. 12.
    A. I. Kozlov, Opt. Zh. 77 (7), (2010).Google Scholar
  13. 13.
    S. V. Golovin, Yu. S. Mezin, M. V. Sednev, A. I. Eremchuk, M. D. Korneeva, Prikl. Fiz., No. 6, 74 (2015).Google Scholar
  14. 14.
    V. M. Akimov, K. O. Boltar, L. A. Vasil’eva, S. S. Demidov, N. A. Irodov, and E. A. Klimanov, Prikl. Fiz., No. 1, 51 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • I. I. Kremis
    • 1
  • V. S. Kalinin
    • 1
  • V. N. Fedorinin
    • 1
  • Yu. M. Korsakov
    • 1
  • K. P. Shatunov
    • 1
  1. 1.Technological and Design Institute of Applied Microelectronics (Branch of Rzhanov Institute of Semiconductor Physics), Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations