Advertisement

Contactless Measurement of Electron Concentration in Undoped Homoepitaxial InSb Layers

  • O. S. Komkov
  • D. D. Firsov
  • T. V. Lvova
  • I. V. Sedova
  • V. A. Solov’ev
  • A. N. Semenov
  • S. V. Ivanov
Articles from the Russian Journal Prikladnaya Fizika

Abstract

The photoreflectance spectra of undoped InSb grown by the molecular beam epitaxy method on the n+-InSb substrate have been measured with a Fourier-transform infrared (FTIR) spectrometer. The intensity of the surface electric field has been determined from the period of the Franz–Keldysh oscillations observed at low temperatures. Since the value of the Fermi level pinning has been stabilized by treating the samples in an aqueous solution of Na2S, the field intensity depends mainly on the concentration of free carriers. The influence of the temperature of preliminary annealing of the substrate on the electron concentration in the epitaxial layer has been observed.

Keywords

indium antimonide InSb photoreflectance Fourier-transform infrared spectroscopy homoepitaxial layers Franz–Keldysh oscillations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Glozman, E. Harush, E. Jacobsohn, O. Klin, P. Klipstein, T. Markovitz, V. Nahum, E. Saguy, J. Oiknine-Schlesinger, I. Shtrichman, M. Yassen, B. Yofis, and E. Weiss, Proc. SPIE 6206, 62060M (2006).CrossRefGoogle Scholar
  2. 2.
    I. D. Burlakov, K. O. Boltar, A. E. Mirofyanchenko, P. V. Vlasov, A. A. Lopukhin, E. V. Pryanikova, V. A. Solov’ev, A. N. Semenov, B. Ya. Meltser, T. A. Komissarova, T. V. Lvova, and S. V. Ivanov, Usp. Prikl. Fiz. 3, 559 (2015).Google Scholar
  3. 3.
    S. V. Ivanov, A. A. Boudza, R. N. Kutt, N. N. Ledentsov, B. Ya. Meltser, S. V. Shaposhnikov, S. S. Ruvimov, and P. S. Kop’ev, J. Cryst. Growth 156 (3), 191 (1995).CrossRefGoogle Scholar
  4. 4.
    D. D. Firsov and O. S. Komkov, Tech. Phys. Lett. 39, 1071 (2013).CrossRefGoogle Scholar
  5. 5.
    T. V. Lvova, M. S. Dunaevskii, M. V. Lebedev, A. L. Shakhmin, I. V. Sedova, and S. V. Ivanov, Semiconductors 47, 721 (2013).CrossRefGoogle Scholar
  6. 6.
    O. S. Komkov, D. D. Firsov, A. N. Semenov, B. Ya. Meltser, S. I. Troshkov, A. N. Pikhtin, and S. V. Ivanov, Semiconductors 47, 292 (2013).CrossRefGoogle Scholar
  7. 7.
    V. A. Solov’ev, I. V. Sedova, T. V. Lvova, M. V. Lebedev, P. A. Dement’ev, A. A. Sitnikova, A. N. Semenov, and S. V. Ivanov, Appl. Surf. Sci. 356, 378 (2015).CrossRefGoogle Scholar
  8. 8.
    O. S. Komkov, G. F. Glinskii, A. N. Pikhtin, and Y. K. Ramgolam, Phys. Status Solidi A 206, 842 (2009).CrossRefGoogle Scholar
  9. 9.
    A. N. Pikhtin, O. S. Komkov, and K. V. Bazarov, Semiconductors 40, 592 (2006).CrossRefGoogle Scholar
  10. 10.
    O. S. Komkov, A. N. Pikhtin, Yu. V. Zhilyaev, and L. M. Fedorov, Tech. Phys. Lett. 34, 37 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. S. Komkov
    • 1
    • 2
  • D. D. Firsov
    • 1
  • T. V. Lvova
    • 2
  • I. V. Sedova
    • 2
  • V. A. Solov’ev
    • 2
  • A. N. Semenov
    • 2
  • S. V. Ivanov
    • 2
  1. 1.St. Petersburg Electrotechnical University LETISt. PetersburgRussia
  2. 2.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations