Range Observation Method Applied to Linear Frequency-Modulated Continuous-Wave Synthetic-Aperture Radars

  • Zh. T. Erdyneev
  • G. Babur
  • A. A. Geltser
Theory and Methods of Signal Processing


The sliding signal processing method interpreted as the range observation technique for syntheticaperture radar systems is discussed. The given method enables us to shift the observed ranges, thereby eliminating the maximum range restriction inherent to the standard de-ramping processing method. The operational capability of the method is demonstrated using radar images obtained from the single received implementation but exhibiting different detection ranges. It is revealed that the method under consideration is efficient upon reduction of nonlinear distortions caused by the nonideal operation of a voltage-controlled oscillator.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aviation Systems of Radio Vision, Ed. by G. S. Kondratenkov (Radiotekhnika, Moscow, 2015) [in Russian].Google Scholar
  2. 2.
    B.-C. Wang, Digital Signal Processing Techniques and Applications in Radar Image Processing (Wiley, Hoboken, 2008).CrossRefGoogle Scholar
  3. 3.
    A. Meta, Signal Processing of FMCW Synthetic Aperture Radar Data. PhD Thesis (Univ. of Technology, Delft, 2006).Google Scholar
  4. 4.
    D. Gromek, P. Krysik, K. Kulpa, et al. in Proc. 2014 IEEE Radar Conf., Lille, Oct. 13–17, 2014 (IEEE, NewYork, 2014), p. 0552.Google Scholar
  5. 5.
    K.-S. Chen, Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach (CRC Press, Boca Raton, 2016).Google Scholar
  6. 6.
    J. J. M. De Wit, Development of an Airborne Ka-Band FM-CW Synthetic Aperture Radar. PhD Thesis (Univ. of Technology, Delft, 2005).Google Scholar
  7. 7.
    A. Hein, Processing of SAR Data: Fundamentals, Signal Processing, Interferometry (Springer-Verlag, Berlin, 2003).Google Scholar
  8. 8.
    E. C. Zaugg and D. G. Long, IEEE Trans. Geosci. Remote Sens. 46, 2990 (2008).CrossRefGoogle Scholar
  9. 9.
    G. Babur, O. A. Krasnov, and L. P. Ligthart, in Proc. 8th Eur. Radar Conf. (EuRAD 2011), Manchester, Oct. 12–14, 2011 (IEEE, New York, 2011), p. 61.Google Scholar
  10. 10.
    Y. Wu and J. P. M. G. Linnartz, in Proc. 32nd WIC Symp. on Information Theory and 1st Joint WIC/IEEE Symp. on Information Theory and Signal Processing in the Benelux, Brussels, May 10–11, 2011 (Univ. of Technology, Delft, 2011).Google Scholar
  11. 11.
    S. Rahman, Focusing Moving Targets Using Range Migration Algorithm in Ultra Wideband Low Frequency Synthetic Aperture Radar (Blekinge Inst. of Technol., Karlskrona, 2010).Google Scholar
  12. 12.
    J. J. M. De Wit, A. Meta, and P. Hoogeboom, IEEE Geosci. Remote Sensing Lett. 3 (1), 83 (2006).CrossRefGoogle Scholar
  13. 13. Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations