Advertisement

On Balanced Clustering (Indices, Models, Examples)

  • M. Sh. LevinEmail author
Information Technology in Engineering Systems
  • 34 Downloads

Abstract

The paper describes and approach to balanced clustering problems. The list of balanced structures includes balanced partitioning of a set, balanced trees, balanced decomposition of a graph, and balanced multilevel structures. Balance indices (characteristics) for balanced structures (clustering solutions) are based on the difference between the cluster parameters: cardinality of a cluster, the total cluster weight, the total weight of edges/arcs of a cluster, and the structure of a cluster in terms of the types of its elements. The proposed balance indices are used as components for optimization models of balanced clustering: objective functions and constraints. Three numerical examples are presented: (1) calculating the balance indices for clustering based on the structure of a cluster in terms of the types of its elements; (2) calculating the balance indices for a clustering solution for a sample network; (3) balanced clustering for forming several student teams.

Keywords

balanced clustering balance indices combinatorial optimization heuristic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Abbasi and M. Younis, “A survey on clustering agorithms for wireless sensor networks,” Comp. Commun. 30 (14–15), 2826–2841 (2007).CrossRefGoogle Scholar
  2. 2.
    G. M. Adelson-Velsky and E. M. Landis, “An algorithm for the organization of information,” Soviet. Math. Dokl. 3, 1259–1263 (1962).Google Scholar
  3. 3.
    A. V. Aho, J. E. Hopcroft, and J. Ullman, Data Structures and Algorithms (Addison-Wesey, Readings, MA, 1983).zbMATHGoogle Scholar
  4. 4.
    J. Akiyama, D. Avis, C. Chvatal, and H. Era, “Balancing sign graphs,” Discr. Appl. Math. 3, 227–233 (1981).CrossRefzbMATHGoogle Scholar
  5. 5.
    M. Amen, “Cost-oriented assembly line balancing: model formulations, solution difficulty, upper and lower bounds,” Eur. J. Oper. Res. 168, 747–770 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    K. Andreev and H. Racke, “Balanced graph partitioning,” Theory Comput. Syst. 39, 929–939 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    N. S. Argyres and B. S. Silverman, “R&D, organization structure, and the development of corporate technological knowledge,” Strategic Management J. 25, 929–958 (2004).CrossRefGoogle Scholar
  8. 8.
    Graph Partitioning and Graph Clustering, Ed. by D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner (AMS, 2013).Google Scholar
  9. 9.
    J.-L. Baer and B. Schwab, “A comparison of tree-balancing algorithms,” Commun. ACM 29, 322–330 (1977).CrossRefGoogle Scholar
  10. 10.
    J. Bar-Ilan, G. Kortsarz, and D. Peleg, “How to allocate network centers,” J. Algorithms 15, 385–415 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    U. Benlic and J. K. Hao, “An effective multilevel tabu search approach for balanced graph partitioning,” Comp. and Oper. Res. 38, 1066–1075 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    C. Berge, “Balanced matrices,” Math. Programming 2 (1), 19–31 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    R. van Bevern, R. Bredereck, M. Chopin, S. Hartung, F. Huffner, A. Nichterlein, and O. Suchy, “Fixed-parameter algorithms for DAG partitioning,” Electr. Preprint, (Nov. 27, 2016). http://arxiv.org/abs/1611.08809 [cs.DS].Google Scholar
  14. 14.
    Graph Partitioning, Ed. by C.-E. Bichot and P. Siarry (Wiley-ISTE, 2013).Google Scholar
  15. 15.
    A. Bonivento, C. Fischione, L. Necchi, F. Pianegiani, and A. Sangiovanni-Vincentelli, “System level design for clustered wireless sensor networks,” IEEE Trans, Ind. Inf. 3, 202–214 (2007).CrossRefGoogle Scholar
  16. 16.
    P. A. Borisovsky, X. Delorme, and A. Dolgui, “Balancing reconfigurable machining lines via a set partitioning model,” Int. J. Prod. Res. 52, 4052–4036 (2014).CrossRefGoogle Scholar
  17. 17.
    N. Boysen, M. Fliedner, and A. Scholl, “A classification of assembly line balancing problems,” Eur. J. Oper. Res. 183, 674–693 (2007).CrossRefzbMATHGoogle Scholar
  18. 18.
    D. Cartwright and F. Harary, “Structural balance: a generalization of Heider’s theory,” Psychol. Rev. 63, 277–293 (1956).CrossRefGoogle Scholar
  19. 19.
    R.-S. Chang, J.-S. Chang, and P.-S. Lin, “An ant. algorithm for balanced job scheduling in grids,” Future Generation Comput. Syst. 25 (1), 20–27 (2009).MathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Conforti, G. Cornuejols, and K. Vuskovic, “Balanced matrices,” in Handbooks in Operations Research and Management Science, Ed. by K. Aardal, G. L. Nemhauser, R. Weismantel (Elsevier, 2005), Vol. 12, pp. 277–319.CrossRefzbMATHGoogle Scholar
  21. 21.
    R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of Scheduling (Addison-Wesley, Readings, Mass., 1967).zbMATHGoogle Scholar
  22. 22.
    T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, 3rd Ed. (MIT Press and McGraw-Hill, 2009).zbMATHGoogle Scholar
  23. 23.
    J. Dai and S. Wang, “Clustering-based interference management in densely deployment femtocell networks,” Digital Commun. and Netw. 2, 175–183 (2016).CrossRefGoogle Scholar
  24. 24.
    A. P. Davies and E. E. Bischoff, “Weight distribution considerations in container loading,” Eur. J. Oper. Res. 114, 509–527 (1999).CrossRefzbMATHGoogle Scholar
  25. 25.
    P. Dell’Olmo and M. G. Speranza, “Approximation algorithms for partitioning small items in unequal bins to minimize the total size,” Discr. Appl. Math. 94, 181–191 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    A. Dolgui, “Balancing assembly and transfer lines,” Eur. J. Oper. Res. 168, 663–665 (2006).CrossRefGoogle Scholar
  27. 27.
    A. Dolgui, N. Guschinsky, and G. Levin, “A special case of transfer lines balancing by graph approach,” Eur. J. Oper. Res. 168, 732–746 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    E. Erel and S. C. Sarin, “A survey of the assembly line balancing procedures,” Prod. Planning & Control 9, 414–434 (1998).CrossRefGoogle Scholar
  29. 29.
    A. E. Feldmann and L. Foschini, “Balanced partitions of trees and applications,” Algorithmica 71, 354–376 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Y.-G. Fu, J. Zhou, and L. Deng, “Surveillance of a 2D plane area with 3D deployment cameras,” Sensors 14, 1988–2011 (2014).CrossRefGoogle Scholar
  31. 31.
    M. R. Garey and D. S. Johnson, Computers and Intractability. The Guide to the Theory of NP-Completeness (W.H. Freeman and Company, San Francisco, 1979).zbMATHGoogle Scholar
  32. 32.
    F. Harary, “On the notion of balance in signed graph,” Michigan Math. 2, 143–146 (1953).MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    T. R. Hoffmann, “Assembly line balancing: a set of challenging problems,” Int. J. Prod. Res. 28, 1807–1815 (1990).CrossRefGoogle Scholar
  34. 34.
    G. Horn and B. J. Oommen, “Towards a learning automata solution to the multi-constraint partitioning problem,” in Proc. IEEE Conf. on Cybernetics and Intelligent Syst., Chulalongkorn Univ., Bangkok, Thailand, 2006 (IEEE, New York, 2006), pp. 1–8.Google Scholar
  35. 35.
    E. Horowitz and S. Sahni, “Computing partitions with applications to the knapsack problem,” J. ACM 21, 277–292 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    P. L. Karlton, S. H. Fuller, R. E. Scroggs, and E. B. Kaehler, “Performance of height-balanced trees,” Commun. ACM 19 (1), 23–28 (1976).CrossRefzbMATHGoogle Scholar
  37. 37.
    A. W. Khan, A. H. Abdullah, M. H. Anisi, and J. I. Bangash, “A comprehensive study of data collection schemes using mobile sinks in wireless sensor networks,” Sensors 14, 2510–2548 (2014).CrossRefGoogle Scholar
  38. 38.
    D. Knuth, The Art of Computing Programming, Vol. 3: Sorting and Searching (Addison-Wesley, 1997).zbMATHGoogle Scholar
  39. 39.
    R. E. Korf, “A complete anytime algorithm for number partitioning,” Artif. Intell. 106, 181–203 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    R. Krauthgamer, J. Naor, and R. Schwattz, “Partitioning graphs into balanced components,” in Proc. 20th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), Philadelphia, 2009 (ACM, 2009), pp. 942–949.Google Scholar
  41. 41.
    P. Kuila and P. K. Jana, “Approximation schemes for load balanced clustering in wireless sensor networks,” J. Supercomput. 68 (1), 87–105 (2014).CrossRefGoogle Scholar
  42. 42.
    M. Sh. Levin, A Decision Support Technology for Modular Systems, Electr. Book (Moscow, 2013). http://www.mslevin.iitp.ru/Levin-bk-Nov2013-071.pdf.Google Scholar
  43. 43.
    M. Sh. Levin, Modular System Design and Evaluation (Sprigner, 2015).CrossRefGoogle Scholar
  44. 44.
    M. Sh. Levin, Towards Combinatorial Clustering: Preliminary Research Survey, Electr. Preprint, May 28, 2015. http://arxiv.org/abs/1505.07872 [cs.AI].Google Scholar
  45. 45.
    M. Sh. Levin, “About a combinatory clustering: review of literature, methods, examples,” Inf. Prots. 15, 215–248 (2015).Google Scholar
  46. 46.
    M. Sh. Levin, “About a dynamic combinatory clustering,” Inf. Prots. 16, 177–193 (2016).Google Scholar
  47. 47.
    M. Sh. Levin, Towards balanced clustering -part 1 (preliminaries), Electr. Preprint, June 9, 2017. http://arxiv.org/abs/1706.03065 [cs.DS].Google Scholar
  48. 48.
    X. Liu, “A survey on clustering routing protocols in wireless sensor networks,” Sensors 12, 11113–11153 (2012).CrossRefGoogle Scholar
  49. 49.
    C. P. Low, C. Fang, J. M. Ng, and Y. H. Ang, “Efficient load-balanced clustering algorithms for wireless sensor networks,” Comp. Commun. 31, 750–759 (2008).CrossRefGoogle Scholar
  50. 50.
    S. Mertens, A complete anytime algorithm for balanced number partitioning, Electr. Preprint, March 9, 1999. http://arxiv.org/abs/9903011 [cs.DS].Google Scholar
  51. 51.
    H. Meyerhenke, P. Sanders, and C. Schulz, “Partitioning (hierarchically clustered) complex networks via size-constrained graph clustering,” J. Heuristics 22, 759–782 (2016).CrossRefzbMATHGoogle Scholar
  52. 52.
    C. L. Monma and T. Carpenter, Variations on Matrix Balancing for Telecommunication Demand Forecasting (Tech. Report, Telcordia, 1997).Google Scholar
  53. 53.
    S. B. Musunoori and G. Horn, “Ant-based approach to the quality aware application service partitioning in a grid environment,” in Proc. 2006 IEEE Int. Conf. on Evolutionary Computation, 2006 (IEEE, 2006), p. 589–596.CrossRefGoogle Scholar
  54. 54.
    S. B. Musunoori and G. Horn, “Intelligent ant-based solution to the application service partitioning problem in a grid environment,” in 6th Int. Conf. on Intell. Syst. Des. and Appl. (ISDA 2006), Oct. 16–18, Jinan, China. 2006) (IEEE, New York, 2006), Vol. 1, pp. 416–424.Google Scholar
  55. 55.
    S. Raisch, “Balanced structures: designing organizations for profitable growth,” Long Range Planning 41, 483–508 (2008).CrossRefGoogle Scholar
  56. 56.
    F. R. Roberts, Discrete Mathematical Models with Applications Social, Biological and Environmental Problems (Prentice Hall, Englewood Cliffs, NJ, 1976).zbMATHGoogle Scholar
  57. 57.
    F. R. Roberts, Graph Theory and Its Applications to Problems of Society (SIAM, Philadelphia, 1976).Google Scholar
  58. 58.
    W. Shang and J. A. B. Fortes, “Independent partitioning of algorithms with uniform dependencies,” IEEE Trans. Comput. 41, 190–206 (1992).CrossRefGoogle Scholar
  59. 59.
    F. Shang and Y. Lei, “An energy-balanced clustering routing algorithm for wireless sensor network,” Wir. Sens. Netw. 2, 777–783 (2010).CrossRefGoogle Scholar
  60. 60.
    D. D. Sleater and R. E. Tarjan, “Self-adjusting binary search trees,” J. ACM 32, 652–686 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    L.-H. Tsai, “Asymptotic analysis of an algorithm for balanced parallel processor scheduling,” SIAM J. Comput. 21, 59–64 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    L. Wang, L. Da Xu, Z. Bi, and Y. Xu, “Data cleaning for RFID and WSN integration,” IEEE Trans, Ind. Inf. 10, 408–418 (2014).CrossRefGoogle Scholar
  63. 63.
    E. Yildiz, K. Akkaya, E. Sisiloglu, and M. Sir, “Optimal camera placement for providing angular coverage in wireless video sensor networks,” IEEE Trans. Comput. 63, 487–503 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    M. Zhao, Y. Yang, and C. Wang, “Mobile data gathering with load balanced clustering and dual data uploading in wireless sensor networks,” IEEE Trans. Mob. Comput. 14, 770–785 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations