Skip to main content
Log in

Projective-invariant description of a meandering river

  • Mathematical Models and Computational Methods
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

How can the projective invariant of the cubic curve approximating the river bed near its meander be calculated? A well-known approach uses the Weierstrass normal form. However, it is important to find this form by means of calculations tolerant to curve representation errors and, in particular, using calculations that do not require computation of tangent lines or inflection points. A new algorithm is proposed for calculation of the projective invariant of the cubic curve. This algorithm can be used to describe river meanders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Belim and P. E. Kutlunin, “Boundary extraction in images using a clustering algorithm,” Comp. Opt. 39, 119–124 (2015). doi 10.18287/0134-2452-2015-39-1- 119-124

    Google Scholar 

  2. P. A. Chochia, “Transition from 2D to 3D images: modification of the two-scale model and algorithms of processing,” J. Commun. Technol. Electron. 60, 678–687 (2015). doi 10.1134/S1064226915060054

    Article  Google Scholar 

  3. J. M. Burdis, I. A. Kogan, and H. Hong, “Objectimage correspondence for algebraic curves under projections,” Symmetry, Integrability and Geometry: Methods and Appl. 9 (023), 3842 (2013). doi 10.3842/SIGMA.2013.023

    Google Scholar 

  4. A. P. Kotov, V. A. Fursov, and E. V. Goshin, “Technology for fast 3D-scene reconstruction from stereo images,” Comp. Opt. 39, 600–605 (2015). doi 10.18287/0134-2452-2015-39-4-600-605

    Article  Google Scholar 

  5. E. V. Goshin and V. A. Fursov, “3D scene reconstruction from stereo images with unknown extrinsic parameters,” Comp. Opt. 39, 770–775 (2015). doi 10.18287/0134-2452-2015-39-5-770-775

    Article  Google Scholar 

  6. D. Mishkin, J. Matas, and M. Perdoch, “MODS: Fast and robust method for two-view matching,” Comput. Vis. Image Underst. 141, 81–93 (2015). doi 10.1016/j.cviu.2015.08.005

    Article  Google Scholar 

  7. E. I. Ershov, V. N. Karnaukhov, and M. G. Mozerov, “Stereovision algorithms applicability investigation for motion parallax of monocular camera case,” J. Commun. Technol. Electron. 61, 695–704 (2016). doi 10.1134/S1064226916060073

    Article  Google Scholar 

  8. S. Lee and Y. Liu, “Curved Glide-Reflection Symmetry Detection,” IEEE Trans. Pattern. Anal. Mach. Intell. 34, 266–278 (2012). doi 10.1109/TPAMI.2011.118

    Article  Google Scholar 

  9. J. Diaz-Escobar, V. I. Kober, and V. N. Karnaukhov, “Restoration of multispectral images distorted by spatially nonuniform camera motion,” J. Commun. Technol. Electron. 60, 1360–1365 (2015). doi 10.1134/S1064226915120050

    Article  Google Scholar 

  10. M. Sela, Y. Aflalo, and R. Kimmel, “Computational caricaturization of surfaces,” Comput. Vis. Image Underst. 141, 1–17 (2015). doi 10.1016/j.cviu.2015.05.013

    Article  Google Scholar 

  11. P. P. Nikolayev, “Recognition of projectively transformed flat figures. VIII. On calculation of the ensemble of correspondence of ovals with rotational symmetry,” Sensory Syst. 29 (1), 28–55 (2015).

    Google Scholar 

  12. N. Pritula, D. P. Nikolaev, A. Sheshkus, M. Pritula, and P. P. Nikolaev, “Comparison of two algorithms modifications of projective-invariant recognition of the plane boundaries with the one concavity,” in Proc. 7th Int. Conf. on Machine Vision (ICMV 2014), Milan, Italy, Nov. 19–21, 2014, Eds. A. Verikas, B. Vuksanovic, P. Radeva, J. Zhou; Proc. SPIE,9445, 944508 (2015). doi 10.1117/12.2181215

    Article  Google Scholar 

  13. R. A. Gershgorin, L. I. Rubanov, and A. V. Seliverstov, “Easily computable invariants for hypersurface recognition,” J. Commun. Technol. Electron. 60, 1429–1431 (2015). doi 10.1134/S1064226915120074

    Article  Google Scholar 

  14. M. Bardet, J.-C. Faugère, and B. Salvy, “On the complexity of the F5 Gröbner basis algorithm,” J. Symbol. Comput. 70, 49–70 (2015). doi 10.1016/j.jsc.2014.09.025

    Article  MATH  Google Scholar 

  15. L. A. Bokut and Yuqun Chen, “Gröbner–Shirshov bases and their calculation,” Bull. Math. Sci. 4, 325–395 (2014). doi 10.1007/s13373-014-0054-6

    Article  MathSciNet  MATH  Google Scholar 

  16. V. R. Kulikov and V. A. Stepanenko, “On solutions and Waring’s formulas for systems of n algebraic equations of n unknowns,” Algebra i Analiz 26, 200–214 (2014); St. Petersburg Math. J. 26, 839–848 (2015).: doi 10.1090/spmj/1361

    Google Scholar 

  17. V. V. Prasolov and Yu. P. Solovyev, Elliptic Functions and Elliptic Integrals (Am. Math. Soc., Providence, 1997; Faktorial, Moscow, 1997).

    MATH  Google Scholar 

  18. A. V. Seliverstov, “Cubic forms without monomials in two variables,” Vestn. Udmurt. Univ.: Mat. Mekh., Komp. Nauki, 25 (1), 71–77 (2015).

    Article  MATH  Google Scholar 

  19. V. V. Prasolov and V. M. Tikhomirov, Geometry (MTsNMO, Moscow, 1997; Am. Math. Soc. 2001).

  20. V. Guletski and A. Tikhomirov, “Algebraic cycles on quadric sections of cubic in P4 under the action of symplectomorphisms,” Proc. Edinburgh Math. Soc. 59, 377–392 (2016). doi 10.1017/S0013091515000176

    Article  MathSciNet  Google Scholar 

  21. S. G. Vladut, G. A. Kabatiansky, and V. V. Lomakov, “On error correction with errors in both the channel and syndrome,” Probl. Inf. Transmis. 51, 132–138 (2015). doi 10.1134/S0032946015020040

    Article  MathSciNet  MATH  Google Scholar 

  22. L. I. Rubanov, “Parallelization of nonuniform loops in supercomputers with distributed memory,” J. Commun. Technol. Electron. 59, 639–646 (2014). doi 10.1134/S1064226914060175

    Article  Google Scholar 

  23. P. Yu. Yakimov, “Tracking traffic signs in video sequences based on a vehicle velocity,” Comp. Opt. 39, 795–800 (2015). doi 10.18287/0134-2452-2015-39-5- 795-800

    Article  Google Scholar 

  24. A. L. Kheifets, “Geometrical accuracy of computer algorithms for constructive problems,” in Problems of the quality of the graphic education of students in a technical college: traditions and innovations (2016). http://dgng.pstu.ru/conf2016/papers/74/.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Rubanov.

Additional information

Original Russian Text © L.I. Rubanov, A.V. Seliverstov, 2016, published in Informatsionnye Protsessy, 2016, Vol. 16, No. 3, pp. 281–290.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubanov, L.I., Seliverstov, A.V. Projective-invariant description of a meandering river. J. Commun. Technol. Electron. 62, 663–668 (2017). https://doi.org/10.1134/S1064226917060201

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226917060201

Keywords

Navigation