A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM Comput. Surv. 38, 45 (2006).
Article
Google Scholar
H. Schweitzer, J. Bell, and F. Wu, “Very fast template matching,” in Proc. 7th Eur. Conf. on Comput. Vis. (ECCV 2002), Copenhagen, Denmark, May 28–31, 2002 (Springer-Verlag, 2002), pp. 358–372.
Google Scholar
S. Nejhum, J. Ho, and M. Yang, “Online visual tracking with histograms and articulating blocks,” in Comput. Vis. Image Underst., 2010, pp. 901–914.
Google Scholar
V. H. Díaz-Ramírez, K. Picos, and V. Kober, “Target tracking in nonuniform illumination conditions using locally adaptive correlation filters,” Opt. Commun. 323, 32–43 (2014).
Article
Google Scholar
I. Haritaoglu, D. Harwood, and L. Davis, “W4: realtime surveillance of people and their activities,” IEEE Trans. Pattern. Anal. Mach. Intell. 22, 809–830 (2000).
Article
Google Scholar
F. Talu, I. Turkoglu, and M. Cebeci, “A hybrid tracking method for scaled and oriented objects in crowded scenes,” Expert Syst. Appl. 38, 13682–13687 (2011).
Google Scholar
A. Buchanan and A. Fitzgibbon, “Document image dewarping using robust estimation of curled text lines,” Combining local and global motion models for feature point tracking, in Comput. Vision Pat. Recogn., 2007, pp. 1–8.
Google Scholar
I. Sbalzarini and P. Koumoutsakos, “Feature point tracking and trajectory analysis for video imaging in cell biology,” J. Struct. Biol. 151 182–195 (2005).
Article
Google Scholar
Z. Kalal, K. Mikolajczyk, and J. Matas, “Trackinglearning- detection,” IEEE Trans. Pattern. Anal. Mach. Intell. 34, 1409–1422 (2012).
Article
Google Scholar
B. Babenko, Y. C. Ming-Hsuan, and S. Belongie, “Visual tracking with online multiple instance learning,” in Proc. IEEE Conf. on Comput. Vision and Patt. Rec. (CVPR 2009), Miami, Florida, June 20–25, 2009, (IEEE, New York, 2009), pp. 983–990.
Google Scholar
S. Song and J. Xiao, “Cluster based weighted SVM for the recognition of Farsi handwritten digits,” in Tracking Revisited Using Rgbd Camera: Unified Benchmark and Base-Lines, (2013), pp. 233–240.
Google Scholar
K. Meshgi, S. Maeda, S. Oba, and S. Ishii, “Fusion of multiple cues from color and depth domains using occlusion aware bayesian tracker,” IEICE Tech. Rep. Neurocomp. 114 (500), 127–132 (2014).
Google Scholar
N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” Comput. Vis. Patt. Rec. 1, 886–893 (2005).
Google Scholar
D. Miramontes-Jaramillo, V. Kober, and V. Díaz-Ramírez, “CWMA: Circular window matching algorithm,” in Proc. 18th Iberoam. Cong. in Patt. Rec., 2013, LNCS 8258, pp. 439–446 (2013).
Google Scholar
D. Miramontes-Jaramillo, V. I. Kober, V. H. Díaz-Ramírez, and V. N. Karnaukhov, “A novel Image Matching Algorithm Based on Sliding Histograms of Oriented Gradients,” J. Commun. Technol. Electron. 59, 1446–1450 (2014).
Article
Google Scholar
V. Gupta, Nonlinear Filters with Spatially Connected Neighborhoods (Laxmi Publications, 2005).
Google Scholar
E. M. Ramos and V. Kober, “Design of correlation filters for recognition of linearly distorted objects in linearly degraded scenes,” J. OSA A 24, 3403–3417 (2007).
Google Scholar
L. P. Yaroslavsky and M. Eden, Fundamentals of Digital Optics (Birkhäuse, Boston, 1996).
Book
MATH
Google Scholar
L. Po-Ming and C. Hung-Yi, “Adjustable gamma correction circuit for TFT LCD,” in Proc. IEEE Symp. on Circ. and Syst., 2005 (IEEE, New York, 2005), pp. 780–783.
Chapter
Google Scholar
W. K. Pratt, Digital Image Processing (Wiley, 2007).
Book
MATH
Google Scholar
G. Takacs, V. Chandrasekhar, S. Tsai, R. Grzeszczuk, and B. Girod, “Distortion invariant pattern recognition with local correlations,” Fast Computation of Rotation- Invariant Image Features by Approximate Radial Gradient Transform, 22, No. 8, pp. 2970–2982 (2013).
Google Scholar