Advertisement

On dynamic combinatorial clustering

  • M. Sh. Levin
Information Technology in Engineering Systems
  • 68 Downloads

Abstract

The paper addresses dynamic combinatorial clustering. First, a systematic literature survey on dynamic/online clustering is presented (problems, methods, applications). Second, restructuring approach to clustering is described (one-stage clustering, multi-stage clustering, sorting). Third, two network application examples of dynamic/multistage clustering are examined: (a) multi-stage connection of users to access points, (b) partition coloring problem in optical networks (wavelength routing and assignment).

Keywords

dynamic clustering combinatorial optimization restructuring network applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Aaron, D. E. Tamir, N. D. Rishe, and A. Kandel, “Dynamic incremental k-means clustering,” in Proc. 2014 Int. Conf. on Computational Science and Computational Intelligence (CSCI’14), Las Vegas, March 10–13, 2014 (Am. Council on Science and Education (ACSE), 2014), pp. 308–313.Google Scholar
  2. 2.
    A. A. Abbasi and M. Younis, “A survey on clustering algorithms for wireless sensor networks,” Comp. Commun. 30 (14–15), 2826–2841 (2007).CrossRefGoogle Scholar
  3. 3.
    C. C. Aggarwal et al., “A framework for clustering evolving data streams,” in Proc. 29th Int. Conf. on Very Large Data Bases, Berlin, Sept. 12–13, 2003, (VLDB, Berlin, 2003). pp. 81–92.Google Scholar
  4. 4.
    C. C. Aggarwal (Ed.), Data Streams: Models and Algorithms (Springer-Verlag, 2007).zbMATHGoogle Scholar
  5. 5.
    C. C. Aggarwal, Outlier Analysis (Springer-Verlag, NewYork, 2013).CrossRefzbMATHGoogle Scholar
  6. 6.
    B. M. Ahamed Shafeeq and K. S. Hareesha, “Dynamic clustering of data with modified k-means algorithm,” in Proc. Int. Conf. on Information and Computer Networks (ICICN 2012), 2012 (IACSIT Press, Singapore, 2012), Vol. 27, pp. 221–225.Google Scholar
  7. 7.
    J. Azorin-Lopez, M. Saval-Calvo, and A. Fuster- Guillo, “A predictive model for recognizing human behaviour based on trajectrory representation,” in Proc. Int. Joint Conf. on Neural Networks, 2014 (IEEE, New York, 2014), pp. 1494–1501.Google Scholar
  8. 8.
    L. Bahiense, Y. Frota, N. Maculan, T. F. Noronha, and C. C. Ribeiro, “A branch-and-cut algorithm for the equitable coloring problem using a formulation by representatives,” Disc. Appl. Math. 164, pp. 34–46 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    S. Bandyopadhyay, C. Giennella, U. Maulik, H. Kargupta, K. Liu, and S. Datta, “Clustering distributed data streams in peer-to-peer environment,” Inf. Sci. 176 (14), 1952–1985 (2006).CrossRefGoogle Scholar
  10. 10.
    S. Banerjee and S. Khuller, “A clustering scheme for hierarchical control in multihop wireless networks,” Proc. IEEE INFOCOM, 1028–1037 (2001).Google Scholar
  11. 11.
    W. Barbakh and C. Fife, “Online clustering algorithms,” Int. J. Neural Systems 18 (03), 185–194 (2008).CrossRefGoogle Scholar
  12. 12.
    A. Benslimane, T. Taleb, and R. Sivaraj, “Dynamic clustering-based adaptive mobile gateway management in integrated VANET-3G heterogeneous wireless networks,” IEEE J. on Selected Areas in Commun. 29, 559–570 (2011).CrossRefGoogle Scholar
  13. 13.
    J. Beringer and E. Hullermaier, “Online clustering of parallel data streams,” Data and Knowledge Engineering, 58, 180–204, (2006).CrossRefGoogle Scholar
  14. 14.
    T. Campbell, M. Liu, B. Kulis, J.P. How, and L. Carin, “Dynamic clustering via asymptotics of dependent Dirichlet process mixture,” Electron. Preprint, Nov. 1 (2013). http://arxiv.org/abs/1305.6659 [cs.LG].Google Scholar
  15. 15.
    F. Cao, M. Ester, W. Qian, and A. Zhou, “Densitybased clustering over an evolving data stream with noise,” in SDM, (SIAM, 2006), Vol. 6, pp. 328–339.Google Scholar
  16. 16.
    D. Cavendish and M. Gerla, “Rouitng optimizaiton in communication networks,” in Combinatorial Optimization in Communication Networks, Ed. by M. X. Cheng, Y. Li, D.-Z. Du, (Springer-Verlag, 2006), pp. 505–547.CrossRefGoogle Scholar
  17. 17.
    T. M. Chan and H. Zarrabi-Zadeh, “A randomized algorithm for online unit clustering,” in Approximation and Online Algorithms (Springer-Verlag, 2007), pp. 121–131.CrossRefGoogle Scholar
  18. 18.
    A. Chattopadhyay, B. Blaszczyszyn, and E. Altman, “Cell planning for mobility management in heterogeneous cellular networks,” Electron. Preprint, May 24, (2016). http://arxiv.org/abs/1605.07341 [cs.NI].Google Scholar
  19. 19.
    W.-P. Chen, J. C. Hou, and L. Sha, “Dynamic clustering for acoustic target tracking in wireless sensor networks,” IEEE Trans. Mobile Comput. 3, 258–271 (2004).CrossRefGoogle Scholar
  20. 20.
    C. Chinrungrueng and C.H. Sequin, “Optimal adaptive k-means algorithm with dynamic adjustment of learning rate,” TR-91-017, Dept. of Electrical Eng. and CS (Univ. of California, Berkeley, 1991).Google Scholar
  21. 21.
    G. Cormode and S. Muthikrishnan, “Space eficient mining of multigraph streams,” in Proc. 24th ACM SIGMOD- SIGACT-SIGART Symp. on Principles of Database Systems PODS, 2005 (ACM, 2005), pp. 271–282.Google Scholar
  22. 22.
    F. G. da Costa, R. A. Rios, and R. F. de Mello, “Using dynamical systems tools to detect concept drift in data streams,” Expert Systems with Appl. (ESwA) 60, 39–50, (2016).CrossRefGoogle Scholar
  23. 23.
    F. Crespo and R. Weber, “A methodology for dynamic data mining based on fuzzy clustering,” Fuzzy Sets Systems 150, 267–284, (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    J. Csirik, L. Epstein, C. Imreh, and A. Levin, “Online clustering with variable sized clusters,” Algorithmica 65, 251–274 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    J. C. da Silva, C. Giennella, R. Bhargava, H. Kargupta, and M. Klusch, “Distributed data mining and agents,” Eng, Appl. AI, 18 (1), 791–807 (2005).CrossRefGoogle Scholar
  26. 26.
    J. Darmont, C. Fromantin, L. Gruenwald, and M. Schneoder, “Dynamic clustering in object-oriented databases: An advocacy for simplicity,” Electron. Preprint, 15 pp., May (2007). http://arxiv.org/abs/0705.0281.Google Scholar
  27. 27.
    S. Datta, C. Giannella, and H. Kargupta, “K-means clustering over a large, dynamic networks,” in Proc. SIAM Conf. SDM'06, 2006, pp. 153–164.Google Scholar
  28. 28.
    E. Diday, “The dynamic cluster method in non-hierarchical clustering,” J. Comput. Inf. Sci. 2, 61–88 (1973).CrossRefzbMATHGoogle Scholar
  29. 29.
    A. Eckstein, “Automated flight track taxonomy for measuring benefits from performance based navigation,” in Proc. Integrated Communications, Navigation and Surveillance Conf., (ICNS) 2009 (IEEE, New York, 2009).Google Scholar
  30. 30.
    M. Enriquez, “Identifying temporally persistent flow in the terminal airspace via spectral clustering,” in Proc. 10th USA/Europe Air Trac management Research and Development Seminar ATM’13, Chicago, 2013 (ATM, Chicago, 2013).Google Scholar
  31. 31.
    M. Enriquez and C. Kurcz, “A simple and robust flow detection algorithym based on spectral clustering,” in Proc. 5th Int. Conf. on Research in Air Transportation (ICRAT 2012), May 22–25, 2012 (Univ. Berkley, California, 2012).Google Scholar
  32. 32.
    Y. Fan, Q. Xu, Y. Guo, and S. Liang, “Visualization on agglomerative information bottleneck based trajectory clustering,” in Proc. 19th Int. Conf. Information Visualization (IV), 2015, pp. 557–560.Google Scholar
  33. 33.
    N. Fereora, J. T. Klosowski, C. E. Scheidegger, and C. T. Silva, “Vector field k-means: Clustering trajectories by fitting multiple vector fields,” Electr. Preprint, Aug. 2012. http://arxiv/abs/1208.5801.Google Scholar
  34. 34.
    A. Fernandez-Caballero, J. C. Castillo, and J. M. Rodriguez-Sabchez, “Human activity monitoring by local and global finite state machines,” ESwA 39, 6982–6993 (2012).Google Scholar
  35. 35.
    S. Fomin and A. Zelevinsky, “Cluster algebras I: Foundations,” J. Am. Math. Soc. 15, 497–520 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Y. Frota, N. Maculan, T. F. Noronha, and C. Ribeiro, “A branch-and-cut algorithm for partition coloring,” Networks, 55, 194–204 (2010).MathSciNetzbMATHGoogle Scholar
  37. 37.
    M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining data streams: A review” ACM SIGMOD Record, 34 (2), 18–26 (2005).Google Scholar
  38. 38.
    M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Data streams mining,” in Data Mining and Knowledge Discovery Hanbook, Part 6, 759–787 (2010).zbMATHGoogle Scholar
  39. 39.
    S. Gaffney and P. Smyth, “Trajectory clustering with mixtures of regression models,” in Proc. 5th Int. Conf. on Knowledge Discovery and Data Mining ACM SIGKDD KDD'99, pp. 63–72, (ACM, 1999).Google Scholar
  40. 40.
    J. Gama and M. M. Gaber, Learning from Data Streams (Springer, Berlin, 2007).CrossRefzbMATHGoogle Scholar
  41. 41.
    J. Gama, Knowledge Discovery from Data Streams (Chapman & Hall/CRC, Boca Raton, FL, 2010).CrossRefzbMATHGoogle Scholar
  42. 42.
    M. Gariel, A. N. Srivastava, and E. Feron, “Trajectory clustering and an application to airspace monitoring,” IEEE Trans. on Intell. Transport. Syst. 12, 1511–1524, (2011).CrossRefGoogle Scholar
  43. 43.
    M. Gekhtman, M. Shapiro, and A. Vainshtein, “Higher pentagram maps, wieghted directed networks, and cluster dynamics,” Electronic Preprint, (Jan. 2, 2012). http://arxiv.org/abs/1110.0472 [math.QA].zbMATHGoogle Scholar
  44. 44.
    M. Glick, “The pentagram map and Y-patterns,” Electronic Preprint, (Apr. 15, 2011). http://arxiv.org/abs/1005.0598 [math.CO].zbMATHGoogle Scholar
  45. 45.
    S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering data streams,” in Proc. 41st Annual IEEE Symp. on Foundations of Computer Science (FOCS), 2000 (IEEE, New York, 2000), pp. 359–366.CrossRefGoogle Scholar
  46. 46.
    S. Guha, N. Koudas, and K. Shim, “Data streams and histograms,” in Proc. ACM STOC, 2001, pp. 471–475.Google Scholar
  47. 47.
    J. Hopcroft, O. Khan, B. Kulis, and B. Selman, “Tracking evolving communities in large linked networks” Proc. Nat. Acad. Sci. USA 101 (Suppl 1), 5249–5353 (2004).CrossRefGoogle Scholar
  48. 48.
    E. A. Hoshino, Y. A. Frota, and C. C. de Souza, “A branch-and-price approach for the partition coloring problem,” Oper. Res. Lett. 39 (2), 132–137 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    J. Jedrzejowicz and P. Jedrzejowicz, “Distance-based online classifiers,” ESwA 60, 249–257 (2016).zbMATHGoogle Scholar
  50. 50.
    M. Roriz Junior, M. Endler, and F. Jose da Silva e Silva, “An on-line algorithm for cluster detection of mobile nodes through complex event processing,” Inform. Syst. (2016) (in press).Google Scholar
  51. 51.
    P. Kalnis and N. Mamaoulis, “On discovering moving clusters in spatio-temporal data,” in Proc. of the 9th Int. Symp. on Spatial and Temporal Databases, 2005 (Springer, 2005), pp. 364–381.Google Scholar
  52. 52.
    K. Kaneko, “Relevance of dynamic clustering to biological networks,” Phys. D: Nonlinear Phenomena 75, 55–73 (1994).CrossRefzbMATHGoogle Scholar
  53. 53.
    G. Karypis, E.-H. Han, and V. Kumar, “Chamaleon: hierarchical clustering using dynamical modeling,” IEEE Computer, 68–75 (1999).Google Scholar
  54. 54.
    E. A. Khalil and B. Attea, “Energy-aware evolutionary routing protocol for dynamic clustering of wireless sensor networks,” Swarm and Evolutionary Comput. 1 (4), 195–203 (2011).CrossRefGoogle Scholar
  55. 55.
    N. Kim, J. Heo, H. S. Kim, and W. H. Kwon, “Reconfiguration of clusterheads for load balancing in wireless sensor networks,” Comput. Commun. 31 (1), 153–159 (2008).CrossRefGoogle Scholar
  56. 56.
    G. Kreml, I. Zliobaite, D. Brzezinski, E. Hullermeier, M. Last, V. Lemaire, et al., “Open challenges for data stream mining research,” ACM SIGKDD Explorations Newsletter, 16 (1), 1–10 (2014).CrossRefGoogle Scholar
  57. 57.
    R. Krishnan and D. Starobinski, “Efficient clustering algorithms for self-organizing wireless sensor networks,” Ad Hoc Netwokrs 4 (1), 36–59 (2006).CrossRefGoogle Scholar
  58. 58.
    M. Last, “Online classication of nonstationary data streams,” Intell. Data Analysis, 6, 129–147 (2002).zbMATHGoogle Scholar
  59. 59.
    J.-G. Lee, J. Han, and K. Y. Whang, “Trajectory clustering: A partition-and-group framework,” in Proc. 2007 ACM SIGMOD Int. Conf. on Management of Data, 2007 (ACM, New York, 2007), pp. 593–604.Google Scholar
  60. 60.
    J.-G. Lee, J. Han, and X. Li, “A unifying framework of mining trajectory patterns of various temporal tightness,” IEEE Trans. Knowl. Data Eng. 27, 1478–1490 (2015).CrossRefGoogle Scholar
  61. 61.
    M. Sh. Levin, “Towards communication network development (structural system issues, combinatorial models),” in Proc. 2010 IEEE Region 8 Int. Conf. SIBIRCON-2010, Baikal-Hotel, Irkutsk, Russia, July 11–15, 2010 (IEEE, New York, 2010), Vol. 1, pp. 204–208.Google Scholar
  62. 62.
    M. Sh. Levin, “Clique-based fusion of graph streams in multi-function system testing,” Informatica 23, 391–404 (2012).MathSciNetGoogle Scholar
  63. 63.
    M. Sh. Levin, Modular System Design and Evaluation (Springer, 2015).CrossRefGoogle Scholar
  64. 64.
    M. Sh. Levin, “Towards combinatorial clustering: preliminary research survey,” Electron. Preprint., (May 28, 2015). http://arxiv.org/abs/1505.07872 [cs.AI].Google Scholar
  65. 65.
    M. Sh. Levin, “On combinatorial clustering: literature review, methods, examples,” J. Commun. Technol. Electron. 60, 1403–1428, (2015).Google Scholar
  66. 66.
    M. Sh. Levin, “Towards integrated glance to restructuring in combinatorial optimization,” Electron. Preprint., (Dec. 20, 2015). http://arxiv.org/abs/1512.06427 [cs.AI].Google Scholar
  67. 67.
    M. Sh. Levin, “Towards bin packing (preliminary problem survey, models with multiset estimates),” Elec. Preprint, (May 24, 2016). http://arxiv.org/abs/1605.07574 [cs.AI].Google Scholar
  68. 68.
    M. Sh. Levin and M. Petukhov, “Multicriteria assignment problem (selection of access points),” in Proc. IEA/AIE, LNCS 6097, Cordoba, Spain, 2010, (Springer, Cordoba, Spain, 2010), part II, pp. 277–287.Google Scholar
  69. 69.
    G. Li and R. Simha, “The partition coloring problem and its application to wavelength routing and assignment,” in Proc. First Workshop on Optical Networks, CDROM, Dallas, 2000, p. 1.Google Scholar
  70. 70.
    W. Liu, Z. Wang, and J. Feng, “Continuous clustering of moving objects in spatial networks,” in Proc. 12th Int. Conf. on Knowledge-Based Intelligent Information and Engineering Systems (KES'08), 2008 (Springer, Berlin, 2008), Part II, 543–550.CrossRefGoogle Scholar
  71. 71.
    Z. Liu, W. Guo, Q. Shi, W. Hu, and M. Xia, “Sliding scheduled lightpath provisioning by mixed partition coloring in WDM optical networks,” Opt. Switching and Networking 10 (1), 44–53, (2013).CrossRefGoogle Scholar
  72. 72.
    S. Luhr and M. Lazarescu, “Incremental clustering of dynamic data streams using connectivity based representative points,” Data Knowledge Eng. 68 (1), 1–27 (2009).CrossRefGoogle Scholar
  73. 73.
    D. Menas-Torres and J. Aguilar-Ruiz, “A similaritybased approach for data stream classification,” ESwA 41, 4224–4234 (2014).Google Scholar
  74. 74.
    M. Millan-Giraldo, J. S. Sanchez, and V. J. Traver “On-line learning from streaming data with delayed attributes: a comparison of classifiers and strategies,” Neural Comput. Appl. 20, 935–944 (2011).CrossRefGoogle Scholar
  75. 75.
    S. Muthukrishnan, Data Streams: Algorithms and Applications (Now Publishers Inc., 2005).zbMATHGoogle Scholar
  76. 76.
    T. M. Nguyen and Q. M. J. Wu, “Dynamic fuzzy clustering and its application in motion segmentation,” IEEE Trans. on Fuzzy Systems 21, 1019–1031 (2013).CrossRefGoogle Scholar
  77. 77.
    T. F. Noronha and C. C. Ribeiro, “Routing and wavelength assignment by partition coloring,” Eur. J. Operat. Res. (EJOR) 171, 797–810 (2006).CrossRefzbMATHGoogle Scholar
  78. 78.
    O. Ossama, H. M. O. Mokhtar, and M. E. El-Sharkawi, “An extended k-means technique for clustering moving objects.” Egyptian Inf. J. 12 (1), 45–51 (2011).Google Scholar
  79. 79.
    O. Ossama, H. M. O. Mokhtar, and M. E. El-Sharkawi, “Dynamic k-means: a clustering technique for moving object trajectories,” Int. J. Intell. Inf. Database Syst., 6, 307–327 (2012).Google Scholar
  80. 80.
    S. K. Pal and S. Mitra, “Fuzzy dynamic clustering algorithm,” Pattern Recogn. Lett. 11, 525–535 (1990).CrossRefzbMATHGoogle Scholar
  81. 81.
    A. Papadogiannis, D. Gesbert, and E. Hardouin, “A dynamic clustering approach in wireless networks with multi-cell cooperative processing,” in Proc. IEEE Int. Conf. on Communications (ICC'08), 2008, (IEEE, New York, 2008), pp. 4033–4037.Google Scholar
  82. 82.
    C. M. Pereira and R. F. de Mello, “Ts-stream: clustering time series on data streams,” J. Intell. Inform. Syst., 42, 531–566, (2014).Google Scholar
  83. 83.
    U. Pferschy, R. Rudolf, and G. J. Woeginger, “Some geometric clustering problems,” Nordic J. Comput. 1, 246–263 (1994).MathSciNetGoogle Scholar
  84. 84.
    C. Piciarelli, G. I. Foresti, and L. Suidara, “Trajectory clustering and its applications for video surveillance,” in IEEE Conf. on Advanced Video and Signal Based Surveillance AVSS 2005, (IEEE, New York, 2005), pp. 40–45.CrossRefGoogle Scholar
  85. 85.
    S. Pramod and O. P. Vyas, “Data stream mining: A review on windowing approach,” Global J. Computer Sci. Technol. Software and Data Engineering, 12 (11), 26–30 (2012).Google Scholar
  86. 86.
    M. Sato-Ilic, “Dynamic fuzzy clustering using fuzzy cluster loading,” Int. J. General Syst. 35 (2), 209–230, (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    A. Shaker and E. Hullermeier, “IBL streams: A system for instance-based classification and regression on data streams,” Evolving Syst. 3 (4), 235–249 (2013).CrossRefGoogle Scholar
  88. 88.
    Y. Shi and A. Zhang, “Dynamic clustering and indexing of multi-dimensional datasets,” in Proc. 4th Int. Conf. on Informaiton Fusion, 2001.Google Scholar
  89. 89.
    B. Wang, H. B. Lim, and D. Ma, “A coverage-aware clustering protocol for wireless sensor networks,” Computer Networks 56, 1599–1611 (2012).CrossRefGoogle Scholar
  90. 90.
    D. Yang, E. A. Rundensteiner, and M. O. Ward, “Mining neighbor-based patterns in data streams,” Inform. Syst., 38, 331–350 (2013).CrossRefGoogle Scholar
  91. 91.
    O. Younis, M. Krunz, and S. Ramasubramanian, “Node clustering in wireless sensor networks: Recent developments and deployment challenges,” IEEE Networks, 20–25, May/June (2006).Google Scholar
  92. 92.
    M. Yu, K. K. Leung, and A. Malvankar, “A dynamic clustering and energy eficient routing technique for sensor networks,” IEEE Trans. Wireless Commun. 6, 3069–3079 (2007).CrossRefGoogle Scholar
  93. 93.
    K. R. Zalik and B. Zalik, “A sweep-line algorithm for spatial clustering,” Adv. Engineering Software 40, 445–451 (2009).CrossRefzbMATHGoogle Scholar
  94. 94.
    O. Zamir and O. Etzioni, “Grouper: a dynamic clustering interface to Web search results,” Computer Networks 31, 1361–1374 (1999).CrossRefGoogle Scholar
  95. 95.
    D. Zhang, and Y. Dong, “Semantic, hierarchical, online clustering of web search results,” in Advanced Web Technologies and Applications (Springer-Verlag, 2004), pp. 69–78.CrossRefGoogle Scholar
  96. 96.
    C. Zopounidis and M. Doumpos, “Multicriteria classification and sorting methods: a literature review,” Eur. J. Operat. Res. 138, 229–246 (2002).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations