Skip to main content
Log in

Pure shear backward waves in the X-cut and Y-cut piezoelectric plates of potassium niobate

  • Physical Processes in Electron Devices
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The problem of the existence of pure shear backward waves and waves with zero group velocity is investigated for X-cut and Y-cut plates of orthorhombic crystal of potassium niobate, which distinguishes from the other crystals by exceptionally strong piezoelectric effect. The secular equations of the problem are derived in an explicit analytical form and they are studied numerically in the case of crystal-vacuum interface. Two factors contributing to the appearance of backward waves are identified: the negative displacement of the rays of bulk shear waves at oblique reflection from the surface in piezoelectric crystals and the concavity in cross section of the slowness surface for bulk shear waves near the X axis of the potassium niobate plate. The wide frequency ranges of the existence of symmetric and antisymmetric backward waves of the first and second orders are numerically found in the X-cut plate, for which both of these factors affect. To study the dispersion spreading of backward shear wave pulses, it is suggested to apply the parabolic equation corresponding to the second approximation in the dispersion theory. It is demonstrated that the “diffusion” coefficient in this equation vanishes at certain frequencies, leading to significant suppression of the dispersion distortions in the pulses of the waves under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lamb, Proc. London Math. Soc. Ser. 2 1 (1), 473 (1904).

    Article  Google Scholar 

  2. I. Tolstoy and E. Usdin, J. Acoust. Soc. Am. 29, 37 (1957).

    Article  Google Scholar 

  3. A. H. Meitzler, J. Acoust. Soc. Am. 38, 835 (1965).

    Article  Google Scholar 

  4. I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (Nauka, Moscow, 1966; Plenum Press, New York, 1967).

    Google Scholar 

  5. P. V. Burlii and I. Ya. Kucherov, JETP Lett. 26, 490 (1977).

    Google Scholar 

  6. V. I. Grigor’evskii, A. I. Kozlov, V. P. Plesskii, and V. P. Tereshkov, Sov. Phys. Acoust. 31, 24 (1985).

    Google Scholar 

  7. K. Negishi, Jpn. J. Appl. Phys. 26 (Suppl. 26-1), 171 (1987).

    Article  Google Scholar 

  8. J. Wolf, T. D. K. Ngoc, R. Kille, and W. G. Mayer, J. Acoust. Soc. Am. 83, 122 (1988).

    Article  Google Scholar 

  9. V. N. Parygin, A. V. Vershoubskiy, V. G. Mozhaev, and M. Weihnacht, Ultrasonics 38 (1-8), 594 (2000).

    Article  Google Scholar 

  10. A. L. Shuvalov and O. Poncelet, Int. J. Solids Struct. 45 (11-12), 3430 (2008).

    Article  MathSciNet  Google Scholar 

  11. B. D. Zaitsev, I. E. Kuznetsova, I. A. Borodina, and A. A. Teplykh, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1660 (2008).

    Article  Google Scholar 

  12. C. Prada, D. Clorennec, T. W. Murray, and D. Royer, J. Acoust. Soc. Am. 126, 620 (2009).

    Article  Google Scholar 

  13. M. Germano, A. Alippi, A. Bettucci, and G. Mancuso, Phys. Rev. B 85, 012102 (2012).

    Article  Google Scholar 

  14. V. Yantchev, L. Arapan, I. Katardjiev, and V. Plessky, Appl. Phys. Lett. 99, 033505 (2011).

    Article  Google Scholar 

  15. P. V. Burlii, P. P. Il’in, and I. Ya. Kucherov, Sov. Tech. Phys. Lett. 8, 247 (1982).

    Google Scholar 

  16. P. V. Burlii, P. P. Il’in, and I. Ya. Kucherov, Phys. Acoust. 43, 266 (1997).

    Google Scholar 

  17. I. Ya. Kucherov and E. V. Malyarenko, Phys. Acoust. 44, 420 (1998).

    Google Scholar 

  18. C. C. Tseng, Appl. Phys. Lett. 16, 253 (1970).

    Article  Google Scholar 

  19. J. L. Bleustein, Appl. Phys. Lett. 13, 412 (1968).

    Article  Google Scholar 

  20. J. L. Bleustein, J. Acoust. Soc. Am. 45, 614 (1969).

    Article  Google Scholar 

  21. B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol.1.

  22. T. R. Meeker and A. H. Meitzler, in Physical Acoustics: Principles and Methods, Ed. by W. P. Mason (Academic, New York, 1964; Mir, Moscow, 1966), Vol. 1A, p.111.

    Google Scholar 

  23. M. Zgonik, R. Schlesser, I. Biaggio, et al., J. Appl. Phys. 74, 1287 (1993).

    Article  Google Scholar 

  24. B. D. Zaitsev, I. E. Kuznetsova, I. A. Borodina, and S. G. Joshi, Ultrasonics 39, 51 (2001).

    Article  Google Scholar 

  25. M. K. Balakirev and I. A. Gilinskii, Waves in Piezoelectric Crystals (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  26. G. N. Burlak, Sov. Phys. Acoust. 30, 496 (1984).

    Google Scholar 

  27. L. M. Lyamshev and N. S. Shevyakhov, Sov. Phys. Acoust. 21, 581 (1975).

    Google Scholar 

  28. T. N. Marysheva and N. S. Shevyakhov, Sov. Phys. Acoust. 32, 259 (1986).

    Google Scholar 

  29. M. K. Balakirev, I. A. Gilinsky, and V. V. Popov, Sol. State Commun. 32, 253 (1979).

    Article  Google Scholar 

  30. A. G. Litvak and V. I. Talanov, Radiophys. Quantum Electron. 10, 296 (1967).

    Article  Google Scholar 

  31. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves (Nauka, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

  32. V. B. Voloshinov, P. A. Nikitin, A. S. Trushin, and L. N. Magdich, Tech. Phys. Lett. 37, 754 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Kuznetsova.

Additional information

Original Russian Text © I.E. Kuznetsova, V.G. Mozhaev, I.A. Nedospasov, 2016, published in Radiotekhnika i Elektronika, 2016, Vol. 61, No. 11, pp. 1122–1131.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, I.E., Mozhaev, V.G. & Nedospasov, I.A. Pure shear backward waves in the X-cut and Y-cut piezoelectric plates of potassium niobate. J. Commun. Technol. Electron. 61, 1305–1313 (2016). https://doi.org/10.1134/S1064226916110085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226916110085

Navigation