Combinatorial clustering: Literature review, methods, examples

Abstract

The paper addresses clustering problems from combinatorial viewpoints. A systemic survey is presented. The list of considered issues involves the following: (1) literature analysis of basic combinatorial methods and clustering of very large data sets/networks; (2) quality characteristics of clustering solutions; (3) multicriteria clustering models; (4) graph based clustering methods (minimum spanning tree based clustering methods, clique based clustering as detection of cliques/quasi-cliques, correlation clustering, detection of network communities); and (5) fast clustering approaches. Mainly, the presented material is targeted to networking. Numerical examples illustrate models, methods and applications.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Abello, M. G. C. Resende, and S. Sudarsky, “Massive quasi-clique detection,” in Lecture Notes in Computer Science (LNCS), Vol. 2573: Proc. 5th Latin American Symp. on Theoretical Informatics (LATIN 2002), Cancun, Mexico, Apr. 3–6, 2002, Ed. By Rajsbaum (Springer-Verlag, Berlin, 2002). pp. 598–612.

    Google Scholar 

  2. 2.

    E. Achtert, C. Bohm, H.-P. Kriegel, P. Kroger, and A. Zimek, “Robust, complete, and efficient correlation clustering,” in Proc. 7th SIAM Int. Conf. on Data Mining (SDM), Minneapolis, MN, 2007 (SIAM, 2007). pp. 413–418.

    Google Scholar 

  3. 3.

    E. Achtert, C. Bohm, J. David, P. Kroger, and A. Zimek, “Global correlation clustering based on the hough transform,” Stat. Anal. Data Mining, 1, 111–127 (2008).

    MathSciNet  Article  Google Scholar 

  4. 4.

    G. Agarwal and D. Kempe, “Modularity maximizing network communitites using mathematical programming,” Eur. Phys J. 66, 4009–418 (2008).

    MathSciNet  Article  Google Scholar 

  5. 5.

    Data Streams: Models and Algorithms, Ed. by C. C. Aggarwal (Springer, New York, 2007).

  6. 6.

    R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic subspace clustering of high dimensional data,” Data Mining Knowl. Discov. 11 (5), 5–33, (2005).

    MathSciNet  Article  Google Scholar 

  7. 7.

    A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms (Addison Wesley, Reading, MA, 1974).

    MATH  Google Scholar 

  8. 8.

    N. Ailon, M. Charikar, and A. Newman, “Aggregating inconsistent information: Ranking and clustering,” J. ACM 55 (5), art. No. 23, (2008).

  9. 9.

    E. Akkoyunlu, “The enumeration of maximal cliques of large graph,” SIAM J. Comput. 2 (1), 1–6 (1973).

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    N. Alon, M. Krivelevich, and B. Sudakov, “Finding a large hidden clique in a random graph,” in Proc. 9th, Ann. ACM-SIAM Symp. on Discr. Alg., San Francisco, CA, 1998 (ACM, 1998). pp. 594–598.

    Google Scholar 

  11. 11.

    C. J. Augeri and H. H. Ali, “New graph-based algorithms for partitioning VLSI circuits,” in Proc. IEEE Int. Symp. on Cirquits and Systems (ISCAS’04), Vancouver, Canada, May 23–26, 2004 (IEEE, New York, 2004). Vol. 4, pp. 521–524.

    Google Scholar 

  12. 12.

    H. Ayad and M. S. Kamel, “On voting-based consensus of cluster ensembles,” Pattern Recogn. 43, 1943–1953 (2010).

    MATH  Article  Google Scholar 

  13. 13.

    L. Babel, “A fast algorithm for the maximum weight clique problem,” Computing 52, 31–38 (1994).

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    G. Babu and M. Nurty, “Clustering with evolution strategy,” Pattern Recogn. Lett. 14, 763–769, (1993).

    MATH  Article  Google Scholar 

  15. 15.

    S. Bagon and M. Galun, “Optimizing large scale correlation clustering,” Electr. Prepr., 9 p., Dec. 13, (2011). http://arxivorg/abs/1112.2903 [cs.CV]

    Google Scholar 

  16. 16.

    E. Balas, V. Chvatal, and J. Nesetril, “On the maximum weight clique problem,” Math., Oper. Res. 12, 522–535 (1987).

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,” in Proc. 43rd Symp. on Foundations of Computer Science (FOCS 2002), Vancouver, BC, Canada, Nov. 16–19, 2002 (IEEE, New York, 2002). pp. 238–250.

    Google Scholar 

  18. 18.

    N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,” Mach. Learn. 56, 89–113 (2004).

    MATH  Article  Google Scholar 

  19. 19.

    V. Batagelj and M. Zavershik, “An O(m) algorithm for cores decomposition of networks,” Electr. Prepr., 10 p., Oct. 25, (2003). http://arxivorg/abs/0310.0049 [cs.DS]

    Google Scholar 

  20. 20.

    A. Ben-Dor, R. Shamir, and Z. Yakhini, “Clustering gene expression patterns,” J. Comput. Biology 6, 281–292, (1999).

    Article  Google Scholar 

  21. 21.

    P. Berkhin, “A survey of clustering data mining techniques,” in Grouping Multidimensional Data, (Springer-Verlag, New York, 2006). 25–71.

    Google Scholar 

  22. 22.

    V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities in large networks,” Electr. Prepr., 12 p., July 25, 2008; http://arxivorg/abs/0803.0476 [physicssoc-ph]

    Google Scholar 

  23. 23.

    V. D. Blondel, M. Esch, C. Chan, F. Clerot, P. Deville, E. Huens, F. Morlot, Z. Smoreda, and C. Ziemlicki, “Data for development the d4d challenge on mobile phone data,” Electr. Prepr., 10 p., Jan. 28, (2012). http://arxivorg/abs/1210.0137 [cs.CY]

    Google Scholar 

  24. 24.

    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex netwoprks: Structure and dynamics,” Phys. Rep. 424, 175–208 (2006).

    MathSciNet  Article  Google Scholar 

  25. 25.

    D. Boley, M. Gini, R. Gross, S. Han, K. Hastings, G. Kapyris, V. Kumar, B. Mobasher, and J. Moor, “Partitioning-based clustering of web document categorization,” Decision Support Syst. (DSS) 27, 329–341 (1999).

    Article  Google Scholar 

  26. 26.

    I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, “The maximum clique problem,” in Handbook of Combinatorial Optimization, Ed. by D.-Z. Du and P. M. Pardalos (Springer, New York, 1999). (Suppl. vol. A), pp. 659–729.

    Google Scholar 

  27. 27.

    U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikolosk, and D. Wagner, “On modularity clustering,” IEEE Trans. Knowl. Data Eng. 20, 172–188, (2008).

    Article  Google Scholar 

  28. 28.

    C. Bron and J. Kerbosch, “Algorithm 457: Finding all cliques of an undirected graph,” Commun. ACM 16, 575–577, (1973).

    MATH  Article  Google Scholar 

  29. 29.

    D. Brown and C. Huntley, “A practical application of simulated annealing to clustering,” Pattern Recogn. 25, 401–412, (1992).

    Article  Google Scholar 

  30. 30.

    S. Butenko and W. Wilhelm, “Clique-detection models in computational biochemistry and genomics,” Eur. J. Operat. Res. (EJOR) 173 (1), 1–17, (2006).

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Z. Cai, M. Lu, and X. Wang, “Channel access-based self-organized clustering in ad hoc networks,” IEEE Trans. Mobile Comput. 2, 102–113 (2003).

    Article  Google Scholar 

  32. 32.

    M. Charikar, V. Guruswami, and A. Wirth, “Clustering with quantitative information,” in Proc. 44th Symp. on Foundations of Computer Science (FOCS 2003), Cambridge, MA, USA, Oct. 11–14, 2003, (IEEE, New York, 2003). pp. 524–533.

    Google Scholar 

  33. 33.

    M. Charikar, V. Guruswami, and A. Wirth, “Clustering with quantitative information,” J. Comput. Syst. Sci. 71, 360–383 (2005).

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    I. Charon and O. Hundry, “Optimal clustering in multipartite graph,” Disc. Appl. Math. 156, 1330–1347 (2008).

    MATH  Article  Google Scholar 

  35. 35.

    C.-Y. Chen and F. Ye, “Particle swam optimization algorithm and its application to cluster analysis,” in Proc. 2004 IEEE Int. Conf. on Networking, Sensing and Control, Taipei, Mar. 21–23, 2004 (IEEE, New York, 2004). vol. 2, 789–794.

    Google Scholar 

  36. 36.

    Y. P. Chen and A. L. Liestman, “Maintaining weaklyconnected dominating sets for clustering ad hoc networks,” Ad Hoc Netw. 3, 629–642 (2005).

    Article  Google Scholar 

  37. 37.

    P. Chen and S. Redner, “Community structure of the physical review citation network,” J. Informetrics 4, 278–290 (2010).

    Article  Google Scholar 

  38. 38.

    C. H. Cheng, “A branch-and-bound clustering algorithm,” IEEE Trans. Syst. Man Cybern. 25, 895–898 (1995).

    Article  Google Scholar 

  39. 39.

    A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure in very large networks,” Phys. Review E 70, No. 066111, 2004.

  40. 40.

    J. Coble, D. J. Cook, and L. B. Holder, “Structure discovery in sequentially-connected data streams,” Int. J. Artif. Intell. Tools 15, 917–944 (2006).

    Article  Google Scholar 

  41. 41.

    C. Cobos, M. Mendoza, and Leon E., “A hyper-heuristic approach to design and tuning heuristic methods for web document clustering,” in Proc. 2011 IEEE Cong. on Evolutionary Computation (CEC), New Orleans, USA, June 5–8, 2011 (IEEE, New York, 2011). pp. 1350–1358.

    Google Scholar 

  42. 42.

    D. Cokuslu, K. Erciyes, and O. Dagdeviren, “A dominating set based clustering algorithm for mobile ad hoc networks,” in Lecture Notes in Computer Science (LNCS), Vol. 3991: Proc. 6th Int. Conf. on Computational Science (ICCS’2006), Reading, UK, May 28–31, 2006, Ed. by V. N. Alexandrov, et al. (Springer-Verlag, Berlin, 2006). pp. 571–578.

    Google Scholar 

  43. 43.

    D. Cokuslu and K. Erciyes, “A hierarchical connected dominating set based clustering algorithm for mobile ad hoc networks,” in Proc. 15th Int. Symp. on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’07), Istanbul, Turkey, Oct. 2007 (IEEE, New York, 2007). pp. 60–66.

    Google Scholar 

  44. 44.

    A. Condon and R. M. Karp, “Algorithms for graph partitining on the planted partition model,” Random Struct. Alg. 18, 116–140 (2001).

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, 3rd ed. (MIT Press, Cambridge, 2009).

    MATH  Google Scholar 

  46. 46.

    D. G. Corneil and Y. Perl, “Clustering and domination in perfect graphs,” Disc. Appl. Math. 9, 27–39, 1984.

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    M. C. Cowgill, R. J. Harvey, and L. T. Watson, “A genetic algorithm approach to cluster analysis,” Comput. Math. Appl. 37 (7), 99–108, (1999).

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    M. Dawande, P. Keskinocak, J. M. Swaminathan and S. Tayur, “On bipartite and multipartite clique problems,” J. Algorithms 41, 388–403 (2001).

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    S. G. de Amorim, J.-P. Barthelemy, and C. C. Ribeiro, “Clustering and clique partitioning: Simulated anealing and tabu search approaches,” J. Classif. 9 (1), 17–41 (1992).

    Article  Google Scholar 

  50. 50.

    E. D. Demaine and N. Immorlica, “Correlation clusteirng with partial information,” in Approximation, Randomization, and Combinatorial Optimization (Algorithms and Techniques, Springer-Verlag, 2003). pp. 1–13.

    Google Scholar 

  51. 51.

    E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica, “Correlation clustering in general weighted graphs,” Theor. Comp. Sci. 361, 172–187 (2006).

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon, “A min-max algorithm for graph partitioning and data clustering,” in Proc. IEEE Int. Conf. on Data Mining (ICDM’01), San Jose, Nov. 2001 (IEEE, New York, 2001). pp. 107–111.

    Google Scholar 

  53. 53.

    H. N. Djidjev, “A scalable multilevel algorithm for graph clustering and community structure detection,” in Lecture Notes in Computer Science (LNCS), Vol. 4936: Proc. 4th Int. Workshop on Algorithms and Models for the Web-Graph (WAW’06), Banff, Canada, Nov. 30–Dec. 1, 2006, Ed. by W. Aiello et al. (Springer, Berlin, 2008). pp. 117–128.

    Google Scholar 

  54. 54.

    D. Duan, Y. Li, R. Li, and Z. Lu, “Incremantal K-clique clustering in dynamic social networks,” Artif. Intell. Rev. 38, 129–147 (2012).

    Article  Google Scholar 

  55. 55.

    J. Duch and A. Arenas, “Community detection in complex networks using extremal optimization,” Phys. Rev. E 72, 027104 (2005).

    Article  Google Scholar 

  56. 56.

    M. Elsner and W. Schudy, “Bounding and comparing methods for correlation clustering beyond ILP,” in Proc. NAACL HLT Workshop on Integer Linear Programming for Natural Language Processing, Boulder, Co, May 31–June 5, 2009 (North Am. Chap. Ass. Comput. Linguistics, 2009). pp. 19–27.

    Google Scholar 

  57. 57.

    D. Emanuel and A. Fiat, “Correlation clustering minimizing disagreements on arbitrary weighted graphs,” in Proc. 11th Ann. Eur. Symp. on Algorithms, ESA-2003, Budapest, Hungary, Sept., 2003 (SpringerVerlag, Berlin, 2003). pp. 208–220.

    Google Scholar 

  58. 58.

    G. Even, J. Naor, S. Rao, and B. Schieber, “Fast approximate graph partitioning algorithms,” SIAM J. Comput. 28, 2187–2214 (1999).

    MathSciNet  MATH  Article  Google Scholar 

  59. 59.

    U. Feige and R. Krauthgamer, “Finding and certifying a large clique in a semi-random graph,” Random Struc. Alg. 16, 195–208, (2000).

    MathSciNet  MATH  Article  Google Scholar 

  60. 60.

    D. Feldman and M. Langberg, “A unified framework for approximating and clustering data,” in Proc. 43rd ACM Symp. on Theory of Computing, (STOC 2011), San Jose, CA, USA, June 6–8, 2011 (ACM, 2011). pp. 569–578.

    Google Scholar 

  61. 61.

    A. E. Feldman and L. Foschini, “Balanced partitions of trees and applications,” Algorithmica 71, 354–376 (2015).

    MathSciNet  Article  Google Scholar 

  62. 62.

    M. R. Fellows, J. Guob, C. Komusiewicz, R. Niedermeier and J. Uhlmann, “Graph-based data clustering with overlaps,” Disc. Optim. 8, 2–17 (2011).

    MATH  Article  Google Scholar 

  63. 63.

    S. Fortunato, “Community detection in graphs,” Electr. Prepr., 103 p., Jan. 25, (2010). http://arxivorg/abs/0906.0612v2 [physicssoc-ph]

    Google Scholar 

  64. 64.

    G. Frahling and C. Sohler, “Coresets in dynamic geometric data streams,” in Proc. 37th ACM Symp. on Theory of Computing (STOC 2005), Baltimore, MD, USA, May 22–24, 2005 (ACM, 2005). pp. 209–217.

    Google Scholar 

  65. 65.

    E. M. Furems, “Dominance-based extension of STEPCLASS for multiattribute nominal classification,” Int. J. Inform. Technol. Dec. Making 12, 905–925 (2013).

    Article  Google Scholar 

  66. 66.

    H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan, “Efficient algorithms for finding minimum spanning trees in undirected and directed graphs,” Combinatorica 6, 109–122 (1986).

    MathSciNet  MATH  Article  Google Scholar 

  67. 67.

    M. R. Garey and D. S. Johnson, Computers and Intractability. The Guide to the Theory of NP-Completeness (W. H. Freeman, San Francisco, 1979).

    Google Scholar 

  68. 68.

    I. Giotis and V. Guruswami, “Correlation clustering with a fixed number of clusters,” in Proc. 17th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’06), Miami, FL, Jan. 22–26, 2006 (SIAM, New York, 2006). pp. 1167–1176.

    Google Scholar 

  69. 69.

    M. Girvan and M. E. J. Newman, “Community structure in social an biological networks. Community structure in social and biological networks,” Proc. Natl. Acad. Sci. USA (PNAS) 99, 8271–8276 (2002).

    MathSciNet  Article  Google Scholar 

  70. 70.

    J. Gramm, J. Guo, F. Huffner, and R. Niedermeier, “Graph-modeled data clustering: Fixed-parameter algorithm for clique generation,” Theory Comput. Syst. 38, 373–392 (2005).

    MathSciNet  MATH  Article  Google Scholar 

  71. 71.

    J. Goldberger and T. Tassa, “A hierarchical clustering algorithm based on the Hungarian method,” Pattern Recogn. Lett. 29, 1632–1638 (2008).

    Article  Google Scholar 

  72. 72.

    B. Goldengorin, D. Krushinsky, and P. M. Pardalos, Cell Formation in Industrial Engineering: Theory, Algorithms and Experiments (Springer-Verlag, New York, 2013).

    Book  Google Scholar 

  73. 73.

    P. K. Gopalan and D. M. Blei, “Efficient discovery of overlapping communites in massive networks,” Proc. Natl. Acad. Sci. USA (PNAS) 110, 14534–14539 (2013).

    MathSciNet  MATH  Article  Google Scholar 

  74. 74.

    J. Gower and G. Ross, “Minimum spanning trees and single linkage cluster analysis,” J. Royal Stat. Soc., Ser. C: Appl. Stat. 18, 54–64 (1969).

    MathSciNet  Google Scholar 

  75. 75.

    O. Grygorash, Y. Zhou, and Z. Jorgensen, “Minimum spanning tree based clustering algorithms,” in Proc. 18th IEEE Int. Conf. in Tools with Artificial Intelligence (ICTAI’06), Arlington, VA, USA, Nov. 13–15, 2006 (IEEE, New York, 2006). pp. 73–81.

    Google Scholar 

  76. 76.

    A. Guenoche, “Consensus partitions: a constructive approach,” Adv. Data Anal., Classif. 5, 215–229 (2011).

    MathSciNet  MATH  Article  Google Scholar 

  77. 77.

    S. Guha, N. Mishra, R. Motwani, and L. O’Callagham, “Clustering data streams,” in Proc. 41st Ann. Symp. Foundations of Computer Science (FOCS), Redondo Beach, CA, Nov. 12–14, 2000 (IEEE Computer Society, 2000). pp. 359–366.

    Google Scholar 

  78. 78.

    R. Guimera, L. Dadon, A. Diaz-Guilera, F. Giralt, and A. Arenas, “Self-similar community structure in a network of human interactions,” Phys. Rev. E 68, 065103 (2003).

    Article  Google Scholar 

  79. 79.

    R. Guimera, M. Sales-Pardo, and L. A. N. Amaral, “Modularity from fluctuations in random graphs and complex networks,” Phys. Rev. E 70, 025101 (2004).

    Article  Google Scholar 

  80. 80.

    I. Gunes and H. Bingol, “Coomunity detection in complex networks using agents,” Electr. Prepr., 5 p., Oct. 23, (2006). arXiv:cs/0610129 [cs.MA]

    Google Scholar 

  81. 81.

    B. Han and W. Jia, “Clustering wireless ad hoc networks with weakly connected dominating set,” J. Parall. Distr. Comput. 67, 727–737 (2007).

    MATH  Article  Google Scholar 

  82. 82.

    P. Hansen and N. Mladenovic, “Variable neighborhood search for the p-median,” Location Sci. 5, 207–226 (1997).

    MATH  Article  Google Scholar 

  83. 83.

    P. Hansen, J. Brimberg, D. Urosevic, and N. Mladenovic, “Data Clustering using Large p-Median Models and Primal-Dual Variable Neighborhood Search,” Les Cahiers du GERAD, G-2007-41, June (2007).

    Google Scholar 

  84. 84.

    P. Hansen, J. Brimberg, D. Urosevic, and N. Mladenovic, “Primal-dual variable neighborhood search for the simple plant-location problem,” INFORMS J. Comput. 19, 552–564 (2007).

    MathSciNet  MATH  Article  Google Scholar 

  85. 85.

    P. Hansen, J. Brimberg, D. Urosevic, and N. Mladenovic, “Solving large p-median clustering problems by primal-dual variable neighborhood search,” Data Min. Knowl. Discov. 19, 351–375 (2009).

    MathSciNet  Article  Google Scholar 

  86. 86.

    S. Har-Peled and S. Mazumdar, “On coresets for kmean and k-median clustering,” in Proc. 36th Annual ACM Symp. on Theory of Computing, Chicago, IL, USA, June 13–16, 2004 (ACM, 2004). pp. 291–300.

    Google Scholar 

  87. 87.

    J. Hopcroft, O. Khan, B. Kulis, and B. Selman, “Natural communities in large linked networks,” in Proc. 9th ACM SIGKDD Int. Conf. on Knowl. Discov. Data Mining (KDD’03), New York, NY, USA, 2003 (ACM, New York, 2003). pp. 541–546.

    Google Scholar 

  88. 88.

    J. Hopcroft, O. Khan, B. Kulis, and B. Selman, “Tracking evolving communities in large linked networks,” Proc. Natl. Acad. Sci. USA 101 (Suppl. 1), 5249–5353 (2004).

    Article  Google Scholar 

  89. 89.

    T. C. Hou and T.-J. Tsai, “An access-based clustering protocol for multihop wireless ad hoc networks,” IEEE J. Selec. Areas Commun. 19, 1201–1210 (2001).

    Article  Google Scholar 

  90. 90.

    E. R. Hruschka, R. G. B. Campello, A. A. Freitas, and A. P. L. Carvalho, “A survey of evolutionary algorithms for clustering,” IEEE Trans. Syst. Man Cybern., Part C 39 (2), 133–155 (2009).

    Article  Google Scholar 

  91. 91.

    Z. Huang, “Extensions to the k-means algorithm for clustering large data sets with categorical values,” Data Mining Knowl. Discov. 2, 283–304 (1998).

    Article  Google Scholar 

  92. 92.

    R. K. R. Indukuri and S. V. Penumathsa, “Dominating sets and spanning tree based clustering algorithms for mobile ad hoc networks,” Int. J. Adv. Comput. Sci. Appl. 2, 75–81 (2011).

    Google Scholar 

  93. 93.

    A. S. Ivanov, A. I. Lyakhov, and E. M. Khorov, “Analytical model of batch flow multihop transmission in wireless networks with channel reservation,” Autom. Remote Control, 76 (7), 1179–1192 (2015).

    MathSciNet  Article  Google Scholar 

  94. 94.

    A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recogn. Lett. 31, 651–666 (2010).

    Article  Google Scholar 

  95. 95.

    A. K. Jain and R. C. Dubes, Algorithms for Clustering Data (Prentice Hall, Upper Saddle River, 1988).

  96. 96.

    A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM Comput. Surv. 31, 264–323 (1999).

    Article  Google Scholar 

  97. 97.

    T. Joachims and J. Hopcroft, “Error bounds for correlation clustering,” in Proc. 22nd Int. Conf. on Machine Learning (ICML’05), Bonn, Germany, Aug. 7–11, 2005 (ACM, 2005). pp. 385–392.

    Google Scholar 

  98. 98.

    DIMACS Ser. in Disc. Math, and Theor. Comp. Sci., Vol. 26: Cliques, Coloring, and Satisfiability, Ed. by D. S. Johnson and M. A. Trick (AMS, Providence, 1996).

  99. 99.

    R. Jovanovic, M. Tuba, and S. Voss, “An ant colony optimization algorithm for partitioning graphs with supply and demand,” Electr. prep. 21 p., March 3 (2015). http://arxivorg/abs/1503.00899 [cs.AI]

    Google Scholar 

  100. 100.

    I. Kargin, E. Khorov, and A. Lyakhov, “A mathematical method to estimate packet loss ratio for a multipath route with error correlation” Probl. Inform. Transmission, (2015).(in press).

    Google Scholar 

  101. 101.

    R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer Computations, Ed. by R. E. Miller and J. W. Thatcher (Plenum, New York, 1972). pp. 85–103.

    Google Scholar 

  102. 102.

    B. Kernigham and S. Lin, “An efficient heuristic procedure for partitioning graphs,” Bell Syst. Techn. J. 49, 291–307 (1970).

    Article  Google Scholar 

  103. 103.

    E. Khorov, A. Lyakhov, A. Krotov, and A. Guschin, “A survey on IEEE 802.11ah: an enabling networking technology for smart cities,” Comput. Commun. 58, 53–69 (2015).

    Article  Google Scholar 

  104. 104.

    E. M. Khorov, A. G. Kiruanov, A. A. Kureev, and A. Lyakhov, “Study of mechanism for building a logical network topology in MANET,” J. Commun. Technol. Electron. 60 (12), (2015). (In Press)

  105. 105.

    E. Khorov, A. Krotov, and A. Lyakhov, “Modeling machine type communication in IEEE 802.11ah network,” in Proc. IEEE Int. Conf. on CommunicationsWorkshop on 5G & Beyond Enabling Technologies and Applications, London, UK, June, 2015 (IEEE, New York, 2015).

    Google Scholar 

  106. 106.

    S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo, “Higher-order correlation clustering for image segmentation,” in Adv. Neural Inf. Process. Syst. 25, 1530–1538 (2011).

    Google Scholar 

  107. 107.

    J. M. Kleinberg, C. Papadimitriou, and P. Raghavan, “Segmentation problems,” in Proc. 30th ACM Symp. on Theory of Computing (STOC’1998), New York, NY, USA, 1998 (ACM, New York, 1998). 473–482 (1998).

    Google Scholar 

  108. 108.

    D. E. Knuth and A. Raghunathan, “The problem of compatible representatives,” SIAM J. on Disc. Math. 5, 422–427 (1992).

    MathSciNet  MATH  Article  Google Scholar 

  109. 109.

    G. Kochenberg, F. Glover, B. Alidaee, and H. Wang, “Clustering of microarray data via clique partitioning,” J. Combin. Optim. 10, 77–92 (2005).

    Article  Google Scholar 

  110. 110.

    H.-P. Kriegel, P. Kroger, E. Schubert, and A. Zimek, “A general framework for increasing the robustness of PCA-based correlation clustering algorithms,” in Proc. 20th Int. Conf. Scientific and Statistical Database Management (SSDBM), Hong Kong, China, 2008 (Springer-Verlag, Berlin, 2008). pp. 418–435.

    Google Scholar 

  111. 111.

    H.-P. Kriegel, P. Kroger, and A. Zimek, “Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering,” ACM Trans. on Knowledge Discovery from Data (KDD) 3 (1), 1–58 (2009).

    Article  Google Scholar 

  112. 112.

    D. P. Kroese, R. Y. Rubinstein, and T. Taimre, “Application of the cross-entropy method for clustering and vector quantization,” J. Global Optim. 37 (1), 137–157 (2007).

    MATH  Article  Google Scholar 

  113. 113.

    V. Kumar, M. Steinbach, and P.-N. Tan, Introduction to Data Mining (Addison-Wesley, 2005).

    Google Scholar 

  114. 114.

    A. C. Kumari and K. Srinivas, Software module clustering using a fast multi-objective hyper-heuristic evolutionary algorithm,” Int. J. of Appl. Inform. Syst. 5 (6), 12–18 (2012).

    Article  Google Scholar 

  115. 115.

    M. Kyperountas, A. Tefas, and I. Pitas, “Dynamic training using multistage clustering for face recognition,” Pattern Recogn. 41, 894–905 (2008).

    MATH  Article  Google Scholar 

  116. 116.

    Y. C. Lai, P. Lin, W. Liao, and C. M. Chen, “A regionbased clustering mechanism for channel access in vehicular ad hoc networks,” IEEE J. Selec. Areas Commun. 29, 83–93 (2011).

    Article  Google Scholar 

  117. 117.

    J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters,” Internet Math. 6, 29–123 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  118. 118.

    M. Sh. Levin, Combinatorial Engineering of Decomposable Systems (Kluwer, Dordrecht, 1998).

    MATH  Book  Google Scholar 

  119. 119.

    M. Sh. Levin, Composite Systems Decisions (SpringerVerlag, New York, 2006).

    Google Scholar 

  120. 120.

    M. Sh. Levin, “Aggregation of composite solutions: strategies, models, examples,” Electr. Prepr., 72 p., (Nov. 29, 2011); http://arxivorg/abs/llll.6983 [cs.SE]

  121. 121.

    M. Sh. Levin, “Multiset estimates and combinatorial synthesis,” Electr. prep., 30 p. (May 9, 2012); http://arxivorg/abs/1205.2046 [cs.SY]

    Google Scholar 

  122. 122.

    M. Sh. Levin, “Clique-based fusion of graph streams in multi-function system testing,” Informatica 23, 391–404 (2012).

    Google Scholar 

  123. 123.

    M. Sh. Levin, Modular System Design and Evaluation (Springer-Verlag, New York, 2015).

    Book  Google Scholar 

  124. 124.

    M. Sh. Levin, “Towards combinatorial clustering: preliminary research survey,” Electr. Prepr., 102 pp., (May 28, 2015); http://arxivorg/abs/1505.07872 [cs.AI]

    Google Scholar 

  125. 125.

    N. P. Lin, C.-I. Chang, H.-E. Chueh, H.-J. Chen, and W.-H. Hao, “A deflected grid-based algorithm for clustering analysis,” WSEAS Trans. Comput. 3 (7), 125–132 (2007).

    Google Scholar 

  126. 126.

    X. Liu, D. Li, S. Wang, and Z. Tao, “Effective algorithm for detecting community structure in complex networks based on GA and clustering,” in Proc. 7th Int. Conf. on Comput. Sci. ICCS’07, Beijing, China, May 27–30, 2007, Ed. by Y. Shi et. al. (Springer-Verlag, Berlin, 2007).

    Google Scholar 

  127. 127.

    X. Liua and T. Murata, “Detecting communities in k-partite k-uniform (hyper)networks,” J. Comput. Sci. Technol. 26, 778–791 (2011).

    Article  Google Scholar 

  128. 128.

    X. Liua, T. Murata, and K. Wakita, “Extending modularity by capturing the similarity attraction feature in the null model,” Electr. Prepr., 10 p., (Feb. 12, 2013); http://arxivorg/abs/1210.4007 [cs.SI]

  129. 129.

    Y. Lu, Y. Sun, G. Xu, and G. Liu, “A grid-based clustering algorithm for high-dimensional data streams,” in Lecture Notes in Computer Science (LNCS), Vol. 3584: Advanced Data Mining and Applications (Proc. 1st Int. Conf. ADMA, Wuhan, China, July 22–24, 2005) (Springer-Verlag, Berlin, 2005). pp. 824–831.

    Google Scholar 

  130. 130.

    C. Mathieu and W. Schudy, “Correlation clustering with noisy input,” in Proc. 21st Ann. ACM-SIAM Symp. on Discrete Algorithms, Austin, TX, USA, Jan., 2010 (SIAM, 2010). pp. 712–728.

    Google Scholar 

  131. 131.

    A. Mehrotra and M. A. Trick, “Cliques and clustering: A combinatorial approach,” Oper. Res. Lett. 22 (1), 1–12 (1998).

    MathSciNet  MATH  Article  Google Scholar 

  132. 132.

    A. Medius, G. Acuna, and C. O. Dorso, “Detection of community strcuture in networks via global optimization,” Physica A 358, 396–405 (2005).

    Google Scholar 

  133. 133.

    S. Mimaroglu and M. Yagci, “CLICOM: Cliques for combining multiple clusterings,” Expert Syst. Appl. 39, 1889–1901 (2012).

    Article  Google Scholar 

  134. 134.

    B. Mirkin and I. Muchnik, “Combinatorial optimization in clustering,” in Handbook of Combinatorial Optimization, Ed. by D.-Z. Du and P. M. Pardalos (Springer-Verlag, New York, 1999) Vol. 2, pp. 261–329.

    Google Scholar 

  135. 135.

    M. Mitchell, “Complex systems: Network thinking,” Artif. Intell. 179, 1194–1212 (2006).

    Article  Google Scholar 

  136. 136.

    J. W. Moon and L. Moser, “On cliques in graphs,” Israel J. Math. 3 (1), 23–28 (1965).

    MathSciNet  MATH  Article  Google Scholar 

  137. 137.

    E. Muller, I. Assent, S. Gunnemann, R. Krieger, and T. Seidl, “Relevant subspace clustering: Mining the most interesting non-redundent concepts in high dimensional data,” in Proc. 9th IEEE Int. Conf. on Data Mining, Miami, Florida, USA, Dec. 6–9, 2009 (IEEE, New York, 2009). pp. 377–386.

    Google Scholar 

  138. 138.

    A. C. Muller, S. Nowozin, and C. H. Lampert, “Information theoretic clustering using minimum spanning trees,” in Lecture Notes in Computer Science, Vol. 7476: Proc. Joint 34th DAGM & 36th OAGM Symp. Pattern Recognition, Graz, Aug., 2012, Ed. by A. Pinz et al. (Springer-Verlag, Berlin, 2012). pp. 205–215.

    Google Scholar 

  139. 139.

    T. Murata, “Detecting communities from tripartite networks,” in Proc. World Wide Web. Conf. (WWW’2010), Raleigh, North Carolina, USA, Apr. 26–30, 2010, (Springer-Verlag, Berlin, 2010). pp. 1159–1160.

    Google Scholar 

  140. 140.

    T. Murata, “Modularity for heterogeneous networks,” in Proc. 21th ACM Conf. on Hypertext and Hypermedia (HyperText’2010), Toronto, Canada, June 13–16, 2010 (ACM, 2010). pp. 129–134.

    Google Scholar 

  141. 141.

    L. M. Naeni, R. Berretta, and P. Moscano, “MA-Net: A reliable memetic algorithm for community detection by modularity optimization,” in Proc. 18th Asia Pac. Symp. on Intell. & Evol. Syst. Nov. 2014, Ed. by H. Handa et. al., (Springer-Verlag, 2015). Vol. 1, pp. 311–323.

    Google Scholar 

  142. 142.

    M. E. J. Newman, “Fast algorithm for detecting community structure in networks,” Electr. Prepr., 5 p., (Sep. 22, 2003); http://arxivorg/abs/0309508 [condmatstat-mech]

    Google Scholar 

  143. 143.

    M. E. J. Newman, “Detecting community structure in networks,” Eur. Phys. J. B 38(2), 321–330 (2004).

    Article  Google Scholar 

  144. 144.

    M. E. J. Newman, “Modularity and community structure in networks,” Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006).

    Article  Google Scholar 

  145. 145.

    M. E. J. Newman, Networks: an Introduction (Oxford Univ. Press, Oxford, 2010).

    Book  Google Scholar 

  146. 146.

    M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks,” Electr. Prepr., 16 p., (Aug. 11, 2003); http:// arxivorg/abs/0308217 [cond-matstat-mech]

    Google Scholar 

  147. 147.

    A. Noack and R. Rotta, “Multi-level algorithms for modularity clustering,” Electr. Prepr., 12 p., (Dec. 22, 2008); http://arxivorg/abs/0812.4073 [cs.DC]

    Google Scholar 

  148. 148.

    M. Oosten, J. G. C. Rutten, and F. C. R. Spieksma, “The clique partioning problem: Facets and patching facets,” Networks 38, 209–226 (2001).

    MathSciNet  MATH  Article  Google Scholar 

  149. 149.

    I. H. Osman and N. Christofides, “Capacitated clustering problems by hybrid simulated annealing and tabu search,” Int. Trans, Oper. Res. 1, 317–336 (1994).

    MATH  Article  Google Scholar 

  150. 150.

    R. E. Osteen and J. T. Tou, “A clique-detection algorithm based on neighborhoods in graphs,” Int. J. Comput. Inf. Sci. 2, 257–268 (1973).

    MathSciNet  MATH  Article  Google Scholar 

  151. 151.

    P. R. J. Ostergard, “A new algorithm for the maximumweight clique problem,” in Proc. Electr. Notes in Disc. Math., 6th Twente Workshop on Graphs and Combinatorial Optimization, 1999 (Univ. Twente, Enschede, Netherlands, 1999). Vol. 3, pp. 153–156.

    MathSciNet  Google Scholar 

  152. 152.

    M. Ovelgonne and A. Geyer-Schulz, “A comparison of agglomerative hierarchical algorithms for modularity clustering,” in Challenges at the Interface of Data Analysis, Computer Science, and Optimization, 2012 (Springer-Verlag, Berlin, 2012). pp. 225–232.

    Google Scholar 

  153. 153.

    T. Ozyer and R. Alhajj, “Parallel clustering of high dimensional data by integrating multi-objective genetic algorithm with divide and conquer,” Appl. Intell. 31, 318–331 (2009).

    Article  Google Scholar 

  154. 154.

    N. Paivinen, “Clustering with a minimum spanning tree of scale-free-like structure,” Pattern Recogn. Lett. 26, 921–930 (2005).

    Article  Google Scholar 

  155. 155.

    P. M. Pardalos and J. Xue, “The maximum clique problem,” J. Global Optim. 4, 301–328 (1994).

    MathSciNet  MATH  Article  Google Scholar 

  156. 156.

    P. Pardalos, M. Batzyn, and E. Maslov, “Cliques and quasi-cliques in large graphs: theory and applications,” in Proc. Int. Conf. on Disc. Optim. & Oper. Res. DOOR-2013, Novosibirsk, June 24–28, 2013 (Sobolev Inst. Math., Novosibirsk, 2013).

    Google Scholar 

  157. 157.

    N. H. Park and W. S. Lee, “Statistical grid-based clustering over data streams,” ACM SIGMOD Record 33, 32–37 (2004).

    Article  Google Scholar 

  158. 158.

    M. Pavan and M. Pelillo, “Dominant sets and pairwise clustering,” IEEE Trans. Pattern. Anal. Mach. Intell. 29, 167–172 (2007).

    Article  Google Scholar 

  159. 159.

    W. Pedrycz, Knowledge-Based Clustering: From Data to Information Granules (Wiley, Hoboken, NJ, 2005).

    Book  Google Scholar 

  160. 160.

    S. J. Peter and S. P. Victor, “A novel algorithm for dual similarity clusters using minimum spanning tree,” J. Theor. Appl. Inform. Technol. 14, 60–66 (2010).

    Google Scholar 

  161. 161.

    S. Pettie and V. Ramashandran, “An optimal minimum spanning tree algorithm,” J. ACM 49, 16–34 (2002).

    MathSciNet  Article  Google Scholar 

  162. 162.

    P. Pons and M. Latapy, “Computing communities in large networks using random works,” J. Graph. Alg. Appl. 10, 191–218 (2006).

    MathSciNet  MATH  Article  Google Scholar 

  163. 163.

    M. A. Porter, J.-P. Onnela, and P. J. Mucha, “Communities in networks”. Notices AMS 56, 1082–1097, 1164 (2009).

    MathSciNet  MATH  Google Scholar 

  164. 164.

    J. Reichardt and S. Bornholdt, “Statistical mechanics of community detection,” Phys. Rev. E 74, 016110, (2006).

    MathSciNet  Article  Google Scholar 

  165. 165.

    C. Rocha, L. C. Dias, and I. Dimas, “Multicriteria classification with unknown categories: A clusteringsorting approach and an application to conflict management,” J. Multi-Cri. Dec. Anal. 20, 13–27 (2013).

    Article  Google Scholar 

  166. 166.

    C. Rocha and L. C. Dias, “MPOC an agglomerative algorithm for multicriteria partially ordered clustering,” Quart. J. Operat. Res. (4OR) 11, 253–273 (2013).

    MathSciNet  MATH  Article  Google Scholar 

  167. 167.

    M. Rosvall and C. T. Bergstrom, “An information-theoretic framework for resolving community structure in complex networks,” Proc. Natl. Acad. Sci. USA (PNAS) 104, 7327–7331 (2007).

    Article  Google Scholar 

  168. 168.

    B. Roy, Multicriteria Methodology for Decision Aiding (Kluwer, Dordrecht, 1996).

    MATH  Book  Google Scholar 

  169. 169.

    R. Y. Rubinstein, “Cross-entropy and rare-events for maximal cut and partition problems,” ACM Trans. Model. Comput. Simul. 12 (1), 27–53 (2002).

    Article  Google Scholar 

  170. 170.

    F. Saeed, N. Salim, and A. Abdo, “Voting-based consensus clustering for combining multiple clusterings of chemical structures,” J. Cheminf. 4 (37), 1–8 (2012).

    MATH  Google Scholar 

  171. 171.

    J. Salzmann, R. Behnke, M. Gag, and D. Timmermann, “4-MASCLE improved coverage aware clustering with self healing abilities,” in Proc. IEEE Symp. & Workshops on Ubiquitous, Autonomic and Trusted Computing (UIC-ATC’09), Brisbane, Australia, July 7–9, 2009 (IEEE, New York, 2009). pp. 537–543.

    Google Scholar 

  172. 172.

    S. E. Schaeffer, “Graph clustering,” Comput. Sci. Rev. 1, 27–64 (2007).

    MATH  Article  Google Scholar 

  173. 173.

    A. Schenker, M. Last, H. Bunke, and A. Kandel, “Classification of web documents using graph matching,” Int. J. Pattern Recognit. Artif. Intell. 18, 475–496 (2004).

    Article  Google Scholar 

  174. 174.

    S. Selim and K. Alsultan, “A simulated annealing algorithm for the clustering problems,” Pattern Recogn. 24, 1003–1008 (1991).

    MathSciNet  Article  Google Scholar 

  175. 175.

    H. M. Selim, R. G. Askin, and A. J. Vakharia, “Cell formation in group technology: review, evaluation and direction for future research,” Comput. Ind. Eng. 34 (1), 3–20 (1998).

    Article  Google Scholar 

  176. 176.

    R. Shamir, R. Sharan, and D. Tsur, “Cluster graph modification problems,” in Lecture Notes in Computer Science, Vol. 2573: Proc. 28th Int. Workshop on GraphTheoretic Concepts in Computer Science, Cesky Krumlov, Czech Republic, June 13-15, 2002 (Springer-Verlag, Berlin, 2002). pp. 379–316.

    Google Scholar 

  177. 177.

    R. Shamir, R. Sharan, and D. Tsur, “Cluster graph modification problems,” Disc. Appl. Math. 144, 173–182 (2004).

    MathSciNet  MATH  Article  Google Scholar 

  178. 178.

    G. Sheikholeslami, C. Chattterjee, and A. Zhang, “WaveCluster: a wavelet-based clustering approach for spatial data in very large databases,” The VLDB J. 8, 289–304 (2000).

    Article  Google Scholar 

  179. 179.

    H. Shiokawa, Y. Fujiwara, and M. Onizuka, “Fast algorithm for modularity-based graph clustering,” in Proc. 27th AAAI Conf. on Artificial Intelligence (AAAI 2013), Bellevue, WA, USA 2013 (AAAI, 2013). 1170–1176.

    Google Scholar 

  180. 180.

    D. A. Spielman and S.-H. Teng, “A local clustering algorithm for massive graphs and its application to nearly linear time graph partitioning,” SIAM J. Comput. 42, 1–26 (2013).

    MathSciNet  MATH  Article  Google Scholar 

  181. 181.

    G. Srinivasan, “A clustering algorithm for machine cell formation in group technology using minimum spanning tree,” Int. J. Prod. Res. 32, 2149–2158 (1994).

    MATH  Article  Google Scholar 

  182. 182.

    C. S. Sung and H. W. Jin, “A Tabu-search-based heuristic for clustering,” Pattern Recogn. 33, 849–858 (2000).

    Article  Google Scholar 

  183. 183.

    C. Swamy, “Correlation clustering: maximizing agreements via semidifinite programming,” in 15th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), New Orleans, LA, Jan., 2004 (SIAM, 2004). pp. 526–527.

    Google Scholar 

  184. 184.

    J. Tabor and P. Spurek, “Cross-entropy clustering,” Pattern Recogn. 47, 3046–3059 (2014).

    Article  Google Scholar 

  185. 185.

    J. Tillet, R. Rao, and F. Sahin, “Cluster-head identification in ad hoc sensor networks using particle swam optimization,” in Proc. 2002 IEEE Int. Conf. on Personal Wireless Commun., New Delhi, India, Dec. 2002 (IEEE, Piscataway, 2002). pp. 201–205.

    Google Scholar 

  186. 186.

    A. Trifunovic and W. J. Knottenbelt, “Parallel multilevel algorithms for hypergraph partitioning,” J. Paral. Distr. Comput. 68, 563–581 (2008).

    MATH  Article  Google Scholar 

  187. 187.

    C.-F. Tsai and C.-C. Yen, “ANGEL: a new effective and efficient hybrid clustering techniques for large databases,” in Lecture Notes in Computer Science, Vol. 4426: Proc. 11th Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD’2007), Nanjing, China, May 22–25, 2007, Ed. by Z.-H. Zhou et. al. (Springer-Verlag, Berlin, 2007). pp. 817–824.

    Google Scholar 

  188. 188.

    C.-F. Tsai, H.-F. Yeh, J.-F. Chang, and N.-H. Liu, “PHD: an efficient data clustering scheme using partition space technique for knowledge discovery in large databases,” Appl. Intell. 33 (1), 39–53 (2010).

    Article  Google Scholar 

  189. 189.

    C.-W. Tsai, H.-J. Song, and M.-C. Chiang, “A hyperheuristic clustering algorithm,” in Proc. 2012 IEEE Int. Conf. on Systems, Man, Cybernetics (SMC’2012) Seoul, Korea (South), Oct. 14–17, 2012 (IEEE, New York, 2012). pp. 2839–2844.

    Google Scholar 

  190. 190.

    L. Y. Tseng and S. B. Yang, “A genetic approach to the automatic clustering problem,” Pattern Recogn. 34, 415–424 (2001).

    MATH  Article  Google Scholar 

  191. 191.

    K. Tsuda and T. Kudo, “Clustering graphs by wieghted substructure mining,” in Proc. 23rd Int. Conf. on Mach. Learn., Pittsburgh, Pennsylvania, USA, June 25–29, 2006 (Carnegie Mellon Univ., Pittsburgh, 2006). pp. 953–960.

    Google Scholar 

  192. 192.

    K. Turner and A. K. Agogino, “Ensemble clustering with voting active clusters,” Pattern Recogn. Lett. 29, 1947–1953 (2008).

    Article  Google Scholar 

  193. 193.

    D. W. Van der Merwe and A. P. Engelbrecht, “Data clustering using particle swam optimization,” in Proc. 2003 IEEE Congr. on Evolutionary Computation (CEC’2003), Newport Beach, California, June, 2003 (IEEE, New York, 2003). Vol. 1, pp. 215–220.

    Article  Google Scholar 

  194. 194.

    A. Vashist, C. A. Kulikowsky, and I. Muchnik, “Orthlog clustering on a multipartite graph,” IEEE/ACM Trans. Comput. Biology Bioinform. 4, 17–27 (2007).

    Article  Google Scholar 

  195. 195.

    S. Vega-Pons and J. Ruiz-Schulcloper, “A survey of clustering ensemble algorithms,” Int. J. Pattern Recogn. Artif. Intell. 25, 337–372 (2011).

    Article  Google Scholar 

  196. 196.

    K. Wakita and T. Tsusumi, “Finding community structure in mega-scale social networks,” Electr. Prepr., 9 p., Fev. 8 (2007). http://arxivorg/abs/0702.2048 [cs.CY]

    Google Scholar 

  197. 197.

    X. Wang, X. Wang, and X. Wikes, “A divide-and-conquer approach for minimum spanning tree-based clustering,” IEEE Trans. Knowledge Data Eng. (KDE) 21, 945–958 (2009).

    Article  Google Scholar 

  198. 198.

    Q. Wang and E. Fleury, “Overlapping community structure and modular overlaps in complex networks,” in Lecture Notes in Social Networks, Part: Mining Social Networks and Security Informatics, Ed. by T. Ozyer et al. (Springer, Berlin, 2013). pp. 15–40.

    Google Scholar 

  199. 199.

    S. White and P. Smyth, “A spectral clustering approach to finding communities in graph,” in Proc. SIAM Data Mining Conf., Trondheim, Norway, Aug. 30–Sept. 2, 2005 (SIAM, 2005). pp. 76–84.

    Google Scholar 

  200. 200.

    J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community detection in networks: The state-of-theart and comparative study,” ACM Comp. Surv. 45 (4) art. 443 (2013).

    Article  Google Scholar 

  201. 201.

    Y. Xu, V. Olman, and D. Xu, “Minimum spanning trees for gene expression data clustering,” Genome Inf. 12, 24–33 (2001).

    Google Scholar 

  202. 202.

    X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger, “SCAN: a structural clustering algorithm for networks,” in Proc. Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD-07), San Jose, Aug. 2007 (ACM, 2007). 824–833.

    Google Scholar 

  203. 203.

    B. Yan and S. Gregory, “Detecting communities in networks by merging cliques,” in Proc. 2nd Int. Conf. on Interaction Sciences: Information Technology, Culture and Human (ICIS 2009), Seoul, Korea (South), Nov. 24–26, 2009 (IEEE, New York, 2009). 832–836.

    Google Scholar 

  204. 204.

    Y. Yang and M. S. Kamel, “An aggregated clustering approach using multi-ant colonies algorithms,” Pattern Recogn. 39, 1278–1289 (2006).

    MATH  Article  Google Scholar 

  205. 205.

    J. Yang and J. Leskovec, “Overlapping community detection at scale: A nonnegative matrix factorization approach,” in Proc. 6th ACM Int. Conf. on Web Search and Data Mining (WSDM’2013), Rome, Feb. 4–8, 2013 (ACM, 2013). 587–596.

    Google Scholar 

  206. 206.

    J. Yang and J. Leskovec, “Overlapping communities explain core-periphery organization of networks,” Proc. IEEE 102, 1892–1902 (2014).

    Article  Google Scholar 

  207. 207.

    J. Yang and J. Leskovec, “Structure and overlaps of ground-truth communities in networks,” ACM Trans. Intell. Syst. Technol. (TIST) 15 (2), art. 26 (2014).

    Google Scholar 

  208. 208.

    J. Yang and J. Leskovec, “Designing and evaluation network communities based on ground-truth,” Knowl. Inf. Syst. 42 (1), 181–213 (2015).

    Article  Google Scholar 

  209. 209.

    A. C. Yao, “E loglog V ) algorithm for finding minimum spanning trees,” Inf. Process. Lett. 4 (1), 21–23 (1975).

    MATH  Article  Google Scholar 

  210. 210.

    D. Y. Yeh, “A dynamic programming approach to the complete set partitioning problem,” BIT Numer. Math. 26, 467–474 (1986).

    MATH  Article  Google Scholar 

  211. 211.

    O. Younis, M. Krunz, and S. Ramasubramanian, “Node clustering in wireless sensor networks: Recent developments and deployment challenges,” IEEE Networks 20 (3), 20–25 (2006).

    Article  Google Scholar 

  212. 212.

    W. W. Zachary, “An information flow model for conflict and fission in small groups,” J. Anthropol. Res. 33, 452–473 (1977).

    Google Scholar 

  213. 213.

    E. Ziv, M. Middendorf, and C. Wiggins, “Information-theoretic approach to network modularity,” Phys. Rev. E 71, 046117 (2005).

    MathSciNet  Article  Google Scholar 

  214. 214.

    C. Zopounidis and M. Doumpos, “Multicriteria classification and sorting methods: a literature review,” Eur. J. Operat. Res. (EJOR) 138, 229–246 (2002).

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Sh. Levin.

Additional information

Original Russian Text © M.Sh. Levin, 2015, published in Informatsionnye Protsessy, 2015, Vol. 15, No. 2, pp. 215–248.

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levin, M.S. Combinatorial clustering: Literature review, methods, examples. J. Commun. Technol. Electron. 60, 1403–1428 (2015). https://doi.org/10.1134/S1064226915120177

Download citation

Keywords

  • clustering
  • classification
  • combinatorial optimization
  • multicriteria decision making
  • heuristics
  • network applications